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Strategic complementarities influence various social and economic activities. This study 
introduces a model to design a weighted and directed complementarity network to 
achieve a planner’s objectives. The network represents the direction and intensity of 
complementarities between agents, influencing their best-responses to one another and 
determining equilibrium efforts. The planner’s objective function can be convex, as 
commonly assumed in prior research, or arbitrarily concave to represent scenarios with 
diminishing marginal returns to each agent’s effort. In all scenarios, optimal networks are 
generalized nested split graphs (GNSGs) which exhibit a link-dominance hierarchy among 
agents. These optimal networks are often strictly hierarchical, leading to inequality between 
ex ante identical agents. Additional analysis of a non-cooperative network formation game 
reveals that all decentralized equilibrium networks are inefficient GNSGs.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

When complementarities are present, an individual’s effort or productivity increases with that of others. Such comple-
mentarities are prevalent in social and economic organizations and can arise through various channels, such as knowledge 
spillovers (Arrow, 1962), peer pressure (Kandel and Lazear, 1992), and social preferences (e.g., Sugden, 1984; Rabin, 1993; 
Fehr and Schmidt, 1999). Considering the prevalence of complementarities and their impact on aggregate outcomes, an 
organizational planner may want to optimize the structure of complementarities to achieve their objectives.

In some circumstances, the planner can manipulate the directions and intensities of complementarities. For instance, Mas 
and Moretti (2009) examine peer effects in traditional workplaces and find that among supermarket workers, “worker ef-
fort is positively related to the productivity of workers who see him, but not workers who do not see him.” Therefore, the 
manager (planner) can change the direction of complementarities by altering the flow direction of productivity-related infor-
mation between workers. “[A]dditionally, workers respond more to the presence of coworkers with whom they frequently 
interact. (Mas and Moretti, 2009)” As a result, the manager can manipulate the intensity of complementarities by managing 
the workers’ overlapping working hours.
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Fig. 1. An illustration of agent 1 link-dominating agent 2. The thickness of links indicates the weights.

This paper examines a planner’s problem of designing a weighted and directed network under complementarities. The 
weight and direction of a link represent the intensity and direction of complementarities, respectively. First, we introduce 
the new notions of link-dominance and generalized nested split graph (GNSG). Previous literature (König et al., 2014; Belhaj 
et al., 2016; Hiller, 2017) defines and examines nested split graphs among simple networks, i.e., networks with unweighted 
and undirected links. GNSGs extend this concept to encompass weighted and directed networks. Second, we demonstrate 
that all solution networks to the planner’s network design problem and all equilibrium networks in a decentralized network 
formation game are GNSGs (Theorems 1 and 2). Third, while previous studies focus on simple networks and convex objective 
functions of the planner (e.g., Belhaj et al. (2016) and Hiller (2017)), our analysis allows for general objective functions of 
the planner and non-linear best-response functions of agents.

Our model involves a planner, a set of homogeneous agents, and two stages.2 First, the planner chooses a weighted and 
directed network from a set of feasible networks. The planner’s chosen network determines the complementarity technology 
that influences the agents’ interactions in the second stage. Second, each agent chooses an effort level. If a directed link
exists from agent i to agent j, then j’s effort increases with i’s effort, and the marginal increment is increasing in the link’s 
weight.3 Thus, the directions of links represent the directions of complementarities and the weights of links represent their 
intensities.

Establishing complementarities is resource-intensive; thus, not all networks are feasible. Each link incurs a cost. A net-
work is feasible to establish by the planner if and only if the total costs of all links do not surpass the planner’s available 
budget. The planner’s problem is to choose a feasible network to maximize an objective function that is increasing in each 
agent’s effort.4 The solution networks to the planner’s problem are referred to as optimal networks.

First, we find that all optimal networks are GNSGs, regardless of whether the planner’s objective function is convex or 
strictly concave (Theorem 1). GNSGs are defined using the concept of link-dominance. As illustrated in Fig. 1, agent 1 link-
dominates agent 2 if, for each of the other agents (let’s say i), the weight of the link from 1 to i is greater than that of the 
link from 2 to i, and the weight of the link from i to 1 is greater than that of the link from i to 2. A GNSG is a weighted 
and directed network in which, for any two agents, one link-dominates the other. In other words, GNSGs exhibit a total 
link-dominance ordering among agents.5

Second, extremely hierarchical GNSGs are optimal in various environments, leading to endogenous inequality. Specifically, 
we identify a range of environments in which optimal networks are strict GNSGs such that all agents are totally and strictly 
ordered by link-dominance (Proposition 1). These environments include cases where the planner’s objective function and 
the agents’ best-response function are arbitrarily convex or modestly concave. In a strict GNSG, no two agents are created 
equal. Among each pair of agents, one strictly link-dominates the other and exerts strictly greater effort. As long as agents’ 
utilities are monotonic in efforts, inequality arises endogenously between ex-ante identical agents.

Third, all equilibrium networks in a decentralized network formation game are inefficient GNSGs (Theorem 2). In the 
decentralized network formation game, each agent chooses the weights of the links directly connected to them. The inef-
ficiency of equilibrium networks stems from two channels. The first channel is that with complementarities, each agent’s 
links generate positive externalities on other agents, but these externalities are overlooked by individual agents. As a result, 
the weight of each link chosen by agents is smaller than the level that maximizes the agents’ total utilities. The second 
channel is the agents’ failure to coordinate on a strictly hierarchical GNSG: all networks maximizing agents’ total utilities 
with the same costs as an equilibrium network are strictly hierarchical, but some equilibrium networks are not.

2 We examine the case of heterogeneous agents in our Online Appendix.
3 For the sake of clarity, we refer to the endogenous outcome variable as each agent’s effort throughout this paper. However, one can consider the 

complementarities representing knowledge spillovers and the outcome variable as each agent’s productivity.
4 In our Online Appendix, we examine the situation where the planner’s objective function is decreasing in each agent’s effort.
5 In a simple nested split graph, a list of centrality measures, including degree centrality and eigenvector centrality, induce the same ordering of agents 

(König et al., 2014) as that induced by link-dominance. We discuss in Section 2.3 that this property does not generally hold for GNSGs.
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1.1. Literature

Our study contributes to the burgeoning literature on the network approach for examining the formation and optimal 
design of social and economic organizations. Specifically, we combine i) the network game approach to model the directions 
and intensities of complementarities (Ballester et al., 2006; Acemoglu et al., 2012; Bramoullé et al., 2014) and ii) the analysis 
of network design problems from a planner’s perspective (Corbo et al., 2006; Belhaj et al., 2016; Hiller, 2017).

Our work is closely related to Corbo et al. (2006); Belhaj et al. (2016); Hiller (2017); König et al. (2014), who explore 
optimal networks under complementarities from a planner’s perspective but limit their analysis to simple networks. From 
these previous studies, it is known that among simple networks, the networks maximizing a convex objective function of the 
planner are simple nested split graphs. However, three questions remain: (i) how to generalize simple nested split graphs 
to weighted and directed networks; (ii) whether optimal weighted and directed networks exhibit analogous nestedness 
and hierarchy properties; and (iii) what occurs when the planner’s objective function is strictly concave, as naturally arises 
in certain production environments.6 Our study addresses all three questions. Notably, a strictly concave objective function 
differ qualitatively from a convex one: while a convex objective function represents increasing marginal returns to an agent’s 
effort, a strictly concave objective function represents diminishing marginal returns. Despite this distinction, we show that 
optimal networks are GNSGs for both convex and strictly concave objective functions.

Recent studies on endogenous weighted networks include Bloch and Dutta (2009); Olaizola and Valenciano (2020); 
Salonen (2016); Baumann (2021). These studies differ from ours in a key respect: they do not consider complementari-
ties in individual activities. In the models of Bloch and Dutta (2009), Salonen (2016) and Olaizola and Valenciano (2020), 
agents only form links and do not engage in other individual activities; thus, no complementarity exists between individ-
ual activities. Due to the omission of complementarity, they identify different networks from our GNSGs. Despite the labels 
“(weighted) nested split graph” and “dominant nested split graph,” the concepts proposed by Olaizola and Valenciano (2020)
are distinct from our GNSGs. They define an undirected network as a (weighted) nested split graph if it can be considered 
an unweighted nested split graph by ignoring the weights of all links. Moreover, as their example (Olaizola and Valenciano, 
2020, p. 83, Fig. 3) shows, what they call a dominant nested split graph is generally not a GNSG based on our definition. 
Thus, their solution networks are generally not optimal in our network design problem under complementarities. Salonen 
(2016) has not considered optimal or efficient networks and his analysis starts with heterogeneous agents. In our model, in-
equality and asymmetry arise endogenously. In Baumann (2021), an agent’s investment in self-activities and the investment 
in connections with others are substitutes.

Similar to our study, Cabrales et al. (2011) assume that network links and individual activities are complementary. 
However, in their model, each agent chooses a single socialization level for interactions with all others. Thus, the choice set 
in their model is much more constrained than ours and it directly implies that all networks under consideration—whether 
stable, efficient, or not—are networks with symmetric links. In contrast, we allow an agent’s inward and outward links with 
different agents to vary, and we uncover that optimal networks feature asymmetric links in a range of environments.7

Our paper is structured as follows. Section 2 introduces the model. Section 3 characterizes optimal networks. Section 4
considers a non-cooperative network formation game to examine the decentralized formation of weighted and directed 
networks. Section 5 concludes the paper. Appendix A contains the proofs of all formal results presented in the main text. 
Our Online Appendix examines four extensions: heterogeneous agents; networks that minimize the sum of agents’ effort 
levels; the effects of imposing a weight cap on each link; and the planner choosing the network and the agents’ efforts 
simultanously to maximize aggregate efficiency.

2. The network design problem under complementarities

2.1. The model

Consider a planner and a set of agents, N = {1, 2 . . . , n}, with n ≥ 3. The planner’s network design problem is modeled 
as a two-stage game between the planner and the agents.

Stage 1. The planner chooses a feasible (weighted and directed) network. A network G ∈ Rn×n+ is an n-by-n nonnegative 
matrix with zeros on the main diagonal. The i jth entry, gij ≥ 0, is the weight of the directed link leading from agent 
j to agent i. We refer to gij as an outward link of j and an inward link of i. It represents the intensity of the directed 
complementarity from j to i. If gij = 0, the directed complementary is absent. The value of gij may differ from g ji . We 
maintain gii = 0 for each i ∈ N .

Establishing network links is costly; hence, not all networks are feasible. Let b > 0 denote the planner’s available budget. 
Let c(gij) denote the costs of establishing link gij , with c(0) = 0, c′ > 0, and c′′ ≥ 0. A network G is feasible if the sum of all 
links’ costs does not exceed the planner’s available budget, i.e.,

6 For instance, Akcigit et al. (2018) discover that knowledge spillovers among patent inventors exhibit diminishing marginal effects.
7 There is a branch of literature on input-output production networks (see Carvalho and Tahbaz-Salehi (2019) for a review) that also examine weighted 

and directed networks. However, the players in a production network face very different incentives and constraints from ours – for example, a firm’s 
production choices are constrained by production technologies and the prices and availabilities of products in a market equilibrium.
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∑
i∈N

∑
j∈N

c(gij) ≤ b. (1)

This budget constraint is analogous to the organizational resource constraints in the problems examined by Dessein et al. 
(2016) and Galeotti et al. (2020). The underlying assumption is that complementarities are not free; they require resources 
such as organizational attention (Simon, 1971) and time and space for organizational members to interact and communicate. 
These resources are limited at the organizational level.

Stage 2. Given the complementary technology described by G , each agent i ∈ N simultaneously chooses an effort level 
xi ≥ 0. Let x = (x1, x2, . . . , xn) denote the effort profile and x−i denote the effort profile of agents other than i. Let φ :R+ →
R+ be strictly increasing and twice-differentiable. Given x and G , the payoffs for each agent i ∈ N are represented by the 
utility function

ui(x, G) = φ

⎛
⎝∑

j∈N

gij x j

⎞
⎠ xi − 1

2
x2

i . (2)

The first term φ(
∑

j gi j x j)xi represents the private return to i’s effort, with φ(
∑

j gi j x j) being the marginal benefit for 
exerting xi . The second term 1

2 x2
i denotes the costs. If gij = 0 for each j ∈ N , then the marginal benefit for exerting efforts 

would be φ(0), which we normalize to φ(0) = 1.8 If gij > 0, then the marginal benefit for exerting efforts φ(
∑

j gi j x j)

increases with j’s effort x j . This positive effect reflects the directed complementarities from j to i. The function φ can be 
concave or convex, depending on the application at hand. When φ is strictly concave (convex), complementarities exhibit 
diminishing (increasing) marginal effects.

Taking the derivative of ui(x, G) with respect to xi , we obtain the agents’ best-response function in the second stage:

xi = φ

⎛
⎝∑

j∈N

gij x j

⎞
⎠ . (3)

We assume the following so that a unique equilibrium effort profile x exists for each feasible network. Let ‖G‖ =
(
∑

i

∑
j g2

i j)
1/2.

Assumption 1. There is a bound λ > 0 on φ′ such that φ′(z) ≤ λ for each z ≥ 0, and λ‖G‖ ≤ 1 for each feasible G .9

Assumption 1 limits the agents’ sensitivity to each other by requiring that ∂xi
∂x j

= φ′ gij not be too large for each i, j pair. 
If this were not the case, agents’ efforts could amplify each other without bound, making an equilibrium effort profile non-
existent. Similar assumptions are commonly found in the network game literature, such as in Ballester et al. (2006); Belhaj 
et al. (2016); Hiller (2017); Baetz (2015) and Galeotti et al. (2020).10 When the constraint (1) is linear (

∑
i

∑
j gi j ≤ b) or 

quadratic (
∑

i

∑
j g2

i j ≤ b), Assumption 1 reduces to the simple condition of λb < 1.11

Assumption 1 has not imposed any restrictions on the distribution of link weights across agents. Symmetric networks, 
asymmetric networks, hierarchical networks, and non-hierarchical networks are all feasible. For instance, a non-hierarchical 
and symmetric complete network with gij = c−1( b

n(n−1)
) for each link is feasible, as is a hierarchical and asymmetric out-

ward star network with gi1 = c−1( b
n−1 ) for each i �= 1 and zero weights for all other links.

Lemma 1. If Assumption 1 holds, then for each feasible network G, a unique x(G) ∈Rn+ exists such that it constitutes an equilibrium 
effort profile in the second stage and x(G) is continuously differentiable.

Let f (xi), with f ′ > 0, denote agent i’s contribution to the planner’s objective. For instance, f is a production function 
that converts the agent’s effort into outputs that directly concern the planner. Then, given the agents’ equilibrium effort 
profile x(G), the planner’s payoffs from network G are given by the objective function

π(G) =
∑
i∈N

f (xi(G)). (4)

8 Our Online Appendix considers heterogeneous agents.
9 Assumption 1 is a sufficient condition. We can instead impose the following weaker, but more difficult to verify, assumption: for each feasible network 

G the best-response mapping �(·, G) defined by �(x, G) = (φ(
∑

i g1i xi), φ(
∑

i g2i xi), . . . , φ(
∑

i gni xi)) is a contraction mapping. If φ is linear, then this 
contraction condition holds if and only if λ times the largest eigenvalue of G is less than 1 for each feasible G , which is the usual assumption for network 
games, e.g., in Ballester et al. (2006).
10 An alternative approach involves imposing a bound on each agent’s effort. This approach can lead to multiple equilibria, as discussed by Bramoullé et 

al. (2014) and Belhaj et al. (2014). This possibility is further discussed in the concluding section.
11 This observation follows from ∑i

∑
j g2

i j ≤ (
∑

i

∑
j gi j)

2 ≤ b2, with the two inequalities binding when gij = b for some i and j.
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The planner’s network design problem is the following.

The planner’s problem. Given Assumption 1, the planner aims to choose a network G to maximize π(G) = ∑
i∈N f (xi(G))

subject to 
∑

i∈N

∑
j∈N c(gij) ≤ b.12,13

We call the solution networks to the planner’s problem optimal networks.

Lemma 2. If Assumption 1 holds, then an optimal network exists.

Given Assumption 1, the planner’s problem is well-defined. In subsequent analyses, we maintain Assumption 1 without 
referring to it repetitively.

2.2. Remarks

We offer three remarks. First, the best-response function (3) is the starting point of our formal analysis. Our results 
are applicable to all simultaneous-move games in the second stage with a best-response function representable by (3). 
For instance, we could assume that agents aim to maximize vi(x, G) = 2

√
φ(

∑
j gi j x j)xi − xi , where the first benefit term 

is strictly concave in xi and the cost term is linear. This utility function results in the same best-response function xi =
φ(

∑
j gi j x j), and all our subsequent results are applicable.

Second, prior research (Corbo et al., 2006; Belhaj et al., 2016; Hiller, 2017; König et al., 2014) assumes that the planner’s 
objective function is convex in each agent’s effort. We permit the contribution function f to be convex or strictly concave, 
thereby covering a broader range of environments. For instance, consider a production environment where the planner’s 
objective function represents total production and f (xi) denotes agent i’s output. As is commonly assumed, production may 
exhibit diminishing marginal returns, making f (xi) strictly concave. Moreover, a strictly concave f implies that the planner 
assigns more decision weight to agents exerting less effort. This characteristic can model the planner’s aversion to effort 
differences among agents – a preference for equality.

Third, in Belhaj et al. (2016), the planner’s problem is formulated (using our notations) as choosing G to maximize the 
unconstrained objective function 

∑
i f (xi(G)) − ∑

i

∑
j c(gij). In this case, link cost is directly incorporated into the plan-

ner’s objective function without any additional constraints. Our characterization of optimal networks for the constrained 
optimization problem (i.e., maximizing 

∑
i f (xi(G)) subject to 

∑
i

∑
j c(gij) ≤ b) is applicable to this unconstrained opti-

mization problem. To demonstrate this, consider the auxiliary problem of choosing G and a number b ≥ 0 to maximize ∑
i f (xi(G)) − b subject to 

∑
i

∑
j c(gij) = b. Note that G∗ maximizes 

∑
i f (xi(G)) − ∑

i

∑
j c(gij) if and only if (G∗, b∗), 

with b∗ = ∑
i

∑
j c(g∗

i j), solves the auxiliary problem. The latter holds if and only if G∗ maximizes 
∑

i f (xi(G)) subject to ∑
i

∑
j c(gij) ≤ b∗ – the problem we consider.14

2.3. Generalized nested split graphs

We introduce the notion of link-dominance to define a GNSG.

Link-dominance. Agent i link-dominates agent j in a network G , denoted by i 
G j, if gki ≥ gkj and gik ≥ g jk for each 
k ∈ N, k �= i, j. If the inequalities are all strict, then we say that i strictly link-dominates j and it is denoted by i �G j.

Note the qualifier k �= i, j in the definition of link-dominance. When we determine whether an agent link-dominates 
another, we do not compare the links directly connecting them.15 Link-dominance generalizes nestedness of neighborhoods 
in simple networks to general weighted and directed networks: if agent i link-dominates agent j and j has an inward 
(outward) link with agent k, then i must also have an inward (outward) link with k, and gik ≥ g jk (gki ≥ gkj). Based on the 
concept of link-dominance, we now define GNSGs. When restricted to simple (i.e., unweighted and undirected) networks, 
the concept of GNSG reduces to the concept of nested split graphs (König et al., 2014).

Generalized nested split graph. A (weighted and directed) network G is a generalized nested split graph (GNSG) if, for each 
i, j ∈ N, i �= j, we have either i 
G j or j 
G i. The network is a strict GNSG if for each i, j ∈ N, i �= j, either i �G j or j �G i.

12 The planner’s objective function being additively separable is not necessary. If π(G) maps one-to-one to π̂ (G) via a strictly increasing transformation, 
then maximizing π(G) is equivalent to maximizing π̂ (G). Hence, the analysis applies to, for example, maximizing π̂(G) = �i xi(G), as it is equivalent to 
maximizing π(G) = ∑

i ln xi(G).
13 Our Online Appendix, Section C, examines optimal networks under linear link cost with a link cap ḡ such that gij ≤ ḡ for each i, j. For each optimal 

network in that case, there is a GNSG that achieves the same optimal outcome.
14 Since f is increasing, the inequality ∑i

∑
j c(gij) ≤ b∗ is binding at the optimum.

15 Conceptually, when we think of i link-dominating j, we consider that all inward links of i are stronger than those of j (in each comparison of gik ≥ g jk) 
and all outward links of i stronger than those of j (in each comparison of gki ≥ gkj ). However, gij is both an inward link of i and an outward link of j, and 
g ji is both an outward link of i and an inward link of j. Therefore, to have link-dominance well-defined, we exclude the links between the two agents in 
focus in the link comparisons.
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Fig. 2. The number on each link indicates its weight. In-degree is defined by din
i = ∑

j gi j , and out-degree is defined by dout
i = ∑

j g ji . In both networks, 
agent 1 strictly link-dominates agent 2 who strictly link-dominates agent 3. However, we have din

1 < din
2 < din

3 in (a) and dout
1 < dout

2 < dout
3 in (b).

We observe two general properties of GNSGs. First, agents can be totally ordered by link-dominance, and a nested 
sequence of cliques can be constructed. To demonstrate this, consider a GNSG with 1 
G 2 
G · · · 
G n. Then, we have 
g12 ≥ g1i ≥ g2i ≥ g ji and g21 ≥ gi1 ≥ gi2 ≥ gij for each i, j ≥ 3. In other words, the links between the top two agents, 
1 and 2, are stronger than those between any other pair of agents. As a result, agents 1 and 2 form a clique. This logic 
extends to larger groups of agents. For instance, we can think of agents 1, 2 and 3 together forming a larger clique, because 
any link among them is stronger than a link between any other pair of agents. Consequently, we obtain a nested sequence 
of cliques: {1, 2} ⊆ {1, 2, 3} ⊆ · · · ⊆ N .

Second, link-dominance ordering does not necessarily coincide with the orderings induced by conventional centrality 
measures in a GNSG with weighted and directed links. In undirected networks, centrality measures often induce the same 
ordering in a simple nested split graph. As demonstrated by König et al. (2014), degree, Bonacich, closeness, betweenness, 
and eigenvector centralities induce the same ordering in a simple nested split graph. However, directed networks introduce 
a distinction between inward and outward measures for degree, closeness, and eigenvector centralities. This distinction can 
result in different orderings that do not align with link-dominance. Fig. 2 presents an example that contrasts link-dominance 
with in-degree and out-degree centralities. In both networks presented in the figure agent 1 link-dominates agent 2 who 
link-dominates agent 3. However, in network (a) agent 3 has a greater in-degree than agent 2 who has a greater in-degree 
than agent 1, whereas in network (b) agent 3 has a greater out-degree than agent 2 who has a greater out-degree than agent 
1. This observation highlights the complexity of weighted and directed networks and shows that link-dominance ordering 
could provide additional insights not fully captured by traditional centrality measures.16

3. Optimal networks

3.1. Marginal value of a link

To establish that all optimal networks are GNSGs, we first need to characterize the marginal value of a link. Consider a 
fixed feasible network G . Let xi = xi(G). The marginal value of link gij in G is defined by

M V ij(G) ≡ ∂π(G)

∂ gij
=

∑
k∈N

f ′(xk)
∂xk

∂ gij
. (5)

This marginal value measures the improvement in the planner’s objective function in response to a marginal increase in the 
weight of the link, gij . It is viewed from the planner’s perspective: it synthesizes the complementarity flows in the network 
and the ultimate contributions of the agents’ effort to the planner’s objective. The marginal value of a link is important 
because given (weakly) convex link costs, M V ij(G) > M Vk�(G) implies gij ≥ gk� in an optimal network. We derive a simple 
formula for M V ij through several steps.

First, let

�(x, G) = (φ(
∑
i∈N

g1i xi),φ(
∑
i∈N

g2i xi), . . . , φ(
∑
i∈N

gni xi)).

The function �(·, G) is the agents’ best-response mapping given G . Let �′ be the n-by-n derivative matrix of � with respect 
to x. To simplify notation, let zi ≡ ∑

j gi j x j denote i’s accumulation of spillovers from others, which is referred to as i’s effort 

16 In Appendix B, we define closeness, eigenvector, Bonacich, and betweenness centralities for weighted and directed networks based on Jackson (2008)
and Opsahl et al. (2010). By calculating these measures for the networks shown in Fig. 2, we show that even with the same link-dominance ordering, the 
inward measures and outward measures of degree, closeness, and eigenvector centralities can induce opposite orderings. Thus, for each of these centralities, 
either the inward or the outward measure differs from the link-dominance ordering.
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potential, as it determines i’s effort in the network: xi = φ(zi). The i jth entry of �′ is �′
i j = φ′(zi)gij . Let I be the n-by-n

identity matrix, and write M ≡ [I − �′]−1.17 The i jth entry of M is denoted by mij .
The elements of M have an intuitive interpretation. To illustrate, consider the case where the agents’ best-responses are 

linear, such that φ(zi) = 1 + λzi where φ′(zi) = λ > 0 is constant. In this case, �′ = λG , and we have

M = [I − �′]−1 =
∞∑

k=0

(
�′)k =

∞∑
l=0

λkGk. (6)

The matrix G keeps track of direct spillovers through paths of length 1, while the kth power of G , for k ≥ 2, keeps track 
of indirect spillovers through all paths of length k. Consequently, M sums all direct and indirect spillovers from one agent 
to another, with spillovers of degree k multiplied by the discount factor λk . In particular, mij sums all direct and indirect 
spillovers from j to i.18

Next, define agent i’s aggregate influence in G by αi(G) ≡ ∂π(G)
∂zi

, which equals

αi(G) = f ′(xi)miiφ
′(zi) +

∑
j∈N\{i}

f ′(x j)m jiφ
′(zi). (7)

Agent i’s aggregate influence αi(G) measures agent i’s aggregate contributions to the planner’s objective through all of i’s 
direct and indirect influences on all agents and on i herself at the margin.

Using the fact that M�′ = M − I , we can obtain a recursive equation for αi(G). Let αi = αi(G) for each agent in G . Then,

αi = f ′(xi)φ
′(zi) +

∑
j∈N\{i}

α j g jiφ
′(zi). (8)

Based on this equation, agent i’s aggregate influence is equal to i’s direct marginal contributions to the planner’s objective 
plus a weighted sum of other agents’ aggregate influences. Hence, aggregate influence can be defined recursively by a 
weighted sum of neighbors’ aggregate influences and determined as a fixed point of the network system in the same way 
as we determine the equilibrium effort of each agent.

Remark 1. Given Assumption 1, in a feasible network G , the aggregate influence index αi(G) exists and is unique for each 
i ∈ N .19

Now, we state the formula to compute the marginal value of a link:

Lemma 3. Let G be a feasible network. Then

1. ∂xk(G)
∂ gij

= mkiφ
′(zi)x j(G), and

2. M V ij(G) = αi(G)x j(G).

That is, the marginal value of the link from j to i simply equals j’s effort x j times i’s aggregate influence αi in the 
network. When the network referred to is clear, we drop the argument and write M V ij = αi x j .

The formula M V ij = αi x j provides practical guidelines for real-world intervention problems beyond the formal problem 
examined in this study. Assuming constant marginal link cost, the formula suggests two network intervention policies for a 
planner with limited control over the network or when there is a pre-existing network in place: i) if the planner can enhance 
one agent’s outward links, she should prioritize enhancing the links of the agent exerting the greatest effort; ii) if the planner can 
enhance one agent’s inward links, she should prioritize enhancing the links of the agent with the greatest aggregate influence. These 
intervention policies are concerned with local interventions applicable to any pre-existing network. They provide valuable 
insights for planners aiming to optimize network structures or improve network performance in various contexts, such as 
facilitating the diffusion of innovations. By following these policies, planners can make targeted network interventions that 
maximize the benefits derived from limited resources or existing network structures.

17 Assumption 1 implies the invertibility of [�′ − I]; see the proof of Lemma 2.
18 The formula M = ∑∞

k=0

(
�′)k holds for any general best-response function φ and feasible network G . Regardless of whether best-responses are linear, 

the i jth element of M measures the total marginal increment effects of z j on xi through all paths by which j can influence i–paths of length 1, length 2, 
and so on, up to infinity–in the network.
19 This result follows from the differentiability of x(G) and the invertibility of [I − �′]. The former is given by Lemma 1. The latter is shown in the proof 

of Lemma 1.
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3.2. Optimal networks are generalized nested split graphs

With the observation M V ij = αi x j , we can state our main result:

Theorem 1. Regardless of whether link costs are linear (c′′ = 0) or strictly convex (c′′ > 0) and whether f and φ are concave or convex, 
every optimal network is a GNSG such that αi(G) ≥ α j(G) if and only if xi(G) ≥ x j(G), and either condition implies i 
G j.20

The theorem states that every optimal network is a GNSG in which agents are totally ordered by link-dominance. More-
over, the orderings of link-dominance, aggregate influence, and equilibrium effort levels coincide in an optimal network. 
Therefore, the aggregate influence αi in an optimal network indicates both the ordering of link-dominance and the ordering 
of the agents’ contributions, f (xi), to the planner’s objective.

Under strictly convex link cost, Theorem 1 is a direct consequence of Lemma 4 below. The case of linear link cost is 
established separately in Proposition 2. The separate treatment is necessary because, with strictly convex link cost it is 
sufficient to examine the Kuhn-Tucker first-order conditions of optimization and using the fact M V ij = αi x j . With linear 
link cost, however, it is necessary to examine the second-order conditions to determine optimal networks.

Lemma 4. Suppose c′′ > 0. Let G be an optimal network, xi = xi(G), and αi = αi(G).

1. If αi ≥ α j , then gik ≥ g jk for each k �= i, j, and xi ≥ x j .
2. If xi ≥ x j , then gki ≥ gkj for each k �= i, j, and αi ≥ α j .
3. If αi ≥ α j , then i 
G j.

Lemma 4 draws two observations. If an agent i is more influential (has a greater αi ) than agent j, then the planner 
enhances i’s inward links to leverage i’s influence, thereby making i exerts more effort (having a greater xi ) than j. Con-
versely, if agent i exerts more effort than j, then the planner enhances i’s outward links to improve i’s influence on others, 
which results in i being more influential (having a greater αi ) than j. The two observations, together, imply that agent i
exerts more effort than j if and only if i has greater aggregate influence than j, and either condition implies that agent i
link-dominates agent j.

3.3. Optimal networks are strictly hierarchical

This subsection shows that optimal networks are often strictly hierarchical, regardless of the planner’s objective function 
being concave or convex.

Proposition 1 below shows that under certain natural conditions, each optimal network is a strict GNSG. In a strict GNSG, 
no agents are created equal: for any two agents, one must strictly link-dominate the other. This means that all agents are 
totally and strictly ordered by link-dominance, and as a result, all agents differ in aggregate influence and effort levels. 
Consequently, whenever agents’ payoffs are monotone in equilibrium efforts, inequality arises endogenously among the 
ex-ante identical agents.21 Let h(z) ≡ f (φ(z)).

Proposition 1. Suppose c′′ > 0 and c′(0) = 0. Then, there are thresholds r > 0, s > 0 and t > 0 such that if h′′ ≥ −r, φ′′ ≥ −s and 
c′′ ≤ t, then every optimal network G is a strict GNSG such that xi(G) �= x j(G) for each i �= j.

The proposition identifies the following conditions for strict GNSGs being optimal: i) a link’s marginal cost c′(gij) is zero 
at gij = 0; ii) the functions f and φ are convex or modestly concave; and iii) the convexity of the link cost function c(gij)

is bounded so that a link’s marginal cost does not increase too rapidly. The condition c′(0) = 0 is a typical Inada condition 
to ensure interior solutions. It implies gij > 0 for each i, j pair in an optimal network. Since it requires that all links are 
positively weighted, it works in the direction of equalizing agents’ effort and aggregate influence. Despite such equalizing 
force, optimal networks are strict GNSGs.

What drives strict GNSGs being optimal is a snowball effect, which results from the convexity in strengthening comple-
mentarities between a fixed pair of agents. To illustrate this effect, consider a network with only two agents and suppose 
that x1 = 1 + gx2 and x2 = 1 + gx1 for a parameter g ∈ (0, 1). In equilibrium, we have x1(g) = x2(g) = 2

1−g . Fig. 3a plots this 
function. The agents’ efforts increase increasingly in g , which demonstrates the convexity. This convexity implies a snowball 
effect: if two agents are already (weakly) more connected with each other, then the planner finds it optimal to strengthen 
the links between them further, at the expense of the links among those who are (weakly) less connected. As a result, 
agents who are (weakly) more influential become strictly more influential because their outward links are further enhanced. 

20 If there is some k �= i, j with gik > 0 or gki > 0, then i 
G j also implies αi(G) ≥ α j(G) and xi(G) ≥ x j(G). The case of i 
G j but αi(G) < α j(G) will 
occur only if i and j are isolated from all other agents: gki = gik = gkj = g jk = 0 for each k �= i, j.
21 For our utility function (2), the agents’ utilities in equilibrium are ui(x(G), G) = 1

2 x2
i (G).
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Fig. 3. (a) Convexity in strengthening the complementarities between agents. (b) G is a completely connected network with equally weighted links. It is 
symmetric everywhere and satisfies the first-order Kuhn-Tucker conditions. However, it is not optimal. (c) Gε is obtained from G by strengthening the links 
between 1 and 2 by an ε amount and weakening the links between 2 and 3 by an ε∗ amount. The costs of G and Gε are the same but there are positive 
ε and ε∗ such that π(Gε ) > π(G).

Agents who exert (weakly) more effort now exert strictly more effort because their inward links are further enhanced. 
Consequently, a strict hierarchy arises.

The following example provides further insight. Consider networks G and Gε shown in Fig. 3. Network G is a complete 
network with equally weighted links. This network is symmetric in every aspect. Thus, each agent exerts the same effort 
xi(G) and has the same aggregate influence αi(G). However, G is not optimal. From G to Gε , we reallocate resources 
to strengthen to the links between agent 1 and agent 2 by an ε > 0 amount, while simultaneously weakening the links 
between agents 2 and 3 by an ε∗ > 0 amount. The values of ε and ε∗ are chosen such that Gε and G have the same costs. 
If the marginal cost of a link does not increase too rapidly (i.e., c(gij) is not too convex), then ε∗ = ε + o(ε) is close to ε
for small values of ε . Consequently, agent 1’s effort will increase, and due to the snowball effect, the increase in agent 1’s 
effort will be strictly greater than the reduction in agent 3’s effort. Since agent 1’s improvement spills over to agent 2, agent 
2’s effort also increases. Thus, x1(Gε) + x3(Gε) ≥ x1(G) + x3(G) and x2(Gε) > x2(G). It follows that if f is not too concave, 
then we will have f (x1(Gε)) + f (x2(Gε)) + f (x3(Gε)) > f (x1(G)) + f (x2(G)) + f (x3(G)). Note that in Gε , agent 1 strictly 
link-dominates agent 2, who in turn strictly link-dominates agent 3.22

However, there are tradeoffs against leveraging the snowball effect. First, convex link cost (c′′ > 0) implies that ε∗ > ε . 
The more convex c is, the more ε∗ is greater than ε , leading to more reduction in the weaker agents’ effort. Second, the 
more concave h(z) = f (φ(z)) is in the planner’s objective function, the greater decision weights the planner assigns to 
weaker agents. Consequently, if c is sufficiently convex and h is sufficiently concave, then the reallocation of weights cannot 
improve performance. In such scenarios, the non-hierarchical network G can be optimal.

Next, we show that all optimal networks under linear link cost are strictly hierarchical. Without further loss of generality, 
we assume c(gij) = gij . Optimal networks under linear link cost take the form of either inward stars or outward quasi-stars, 
both of which are special cases of GNSGs.

Inward star. An inward star is a network G such that after appropriate reindexing, 
∑

j∈N g1 j > 0 and 
∑

j∈N gij = 0 for each 
i �= 1, i.e., all links are built toward agent 1.

Outward quasi-star. An outward quasi-star is a network G such that after appropriate reindexing, i) g12 ≥ g21 > 0, ii) g j1 ≥ 0
for each j ≥ 3, and iii) zero weights for all other links.

22 This example also demonstrates that examining only the first-order conditions of equalizing M V ij/c′(gij) for each link is insufficient. Given that xi(G)

and αi(G) are the same across agents, M V ij = αi x j is identical for all links in G . Therefore, the condition of equalizing M V ij/c′(gij) holds for such network.
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Fig. 4. (a) An inward star. (b) A connected outward quasi-star: g12 > g21 > g j1 for each j ≥ 3.

Fig. 5. Examples of optimal networks under linear link cost.

In a feasible network G , let x̄(G) = maxi∈N xi(G) denote the maximum effort and x(G) = mini∈N xi(G) denote the mini-
mum effort. Observe that x̄(G) = x1(G) > x(G) in both an inward star and an outward quasi-star.

Proposition 2. Suppose c(gij) = gij . Then optimal networks are either all inward stars or all outward quasi-stars. In either case, 
x̄(G) > x(G) for every optimal G.

The optimality of inward stars versus outward quasi-stars depends on the curvature of the contribution function f and 
the overall strength of complementarities. If the overall strength of complementarities is weak (i.e., φ′ is small) and f is 
highly convex, causing the planner to focus on enhancing the maximum effort across all agents, then optimal networks 
take the form of inward stars. In all other cases, optimal networks are outward quasi-stars. If f is sufficiently concave, then 
each optimal network is a connected outward quasi-star, as illustrated in Fig. 4b: two agents form a clique at the center, 
exerting a strong influence on each other, while one of them imposes a one-way influence on all remaining agents. This 
design leads to an extreme concentration of influence regardless of the concavity of f . The subsequent remark provides a 
sufficient condition for the optimality of inward stars versus outward quasi-stars, accompanied by a numerical example. Its 
proof can be found in Appendix A.

Remark 2. Suppose c(gij) = gij and b = 1. Consider linear best-responses such that φ(z) = 1 + λz with 0 < φ′(z) = λ < 1, 
and suppose f ′′ = η is a constant. Then there are a threshold r > 0 and a strictly increasing and positive function of λ, 
D(λ) > 0, such that

1. if φ′(z) = λ < r and f ′′ = η > D(λ), then each optimal network is an inward star;
2. if η < D(λ), then each optimal network is an outward quasi-star.

Example 1 (Optimal networks under linear link cost). Suppose N = {1, 2, 3, 4}, c(gij) = gij , b = 1, and φ(z) = 1 + λz with 
λ > 0.23 When φ′ = λ is small, the complementarity technology is weak. When λ is large, the complementarity technology 
is strong. Consider the four networks displayed in Fig. 5:

1. If λ = 0.1 and f (xi) = x5
i , then any G1 with g12 + g13 + g14 = 1 is optimal;

2. If λ = 0.6 and f (xi) = xi , then G2 is optimal;
3. If λ = 0.6 and f (xi) = x5

i , then G3 is optimal;
4. If λ = 0.6 and f (xi) = − 1

xi
, then G4 is optimal. ||

23 Given c(gij) = gij and φ(z) = 1 + λz, Assumption 1 holds if and only if λ < 1.
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Finally, we discuss the relationship between the planner’s optimal networks and efficient networks. Efficient networks 
are those that maximize the sum of agents’ utilities, 

∑
i ui(x(G), G). When the planner’s objective deviates from this goal, 

optimal networks may differ from efficient ones. Specifically, maximizing 
∑

i ui(x(G), G) results in high levels of inequality. 
By substituting equilibrium effort xi(G) into agents’ utility functions we obtain ui(x(G), G) = 1

2 (xi(G))2. Thus, maximizing 
aggregate efficiency is equivalent to maximizing 

∑
i f (xi(G)) = ∑

i(xi(G))2, with f (xi) = x2
i being strictly convex. According 

to Proposition 1, when f is convex and link costs are strictly convex, optimal networks tend to be strict GNSGs. Additionally, 
Proposition 2 states that under linear link cost, optimal networks are either inward stars or outward quasi-stars. The shared 
characteristic among strict GNSGs, inward stars, and a network with only two agents influencing each other is a large gap 
between the maximum and minimum effort among agents. In contrast, when the planner has a strictly concave f , the 
planner assigns greater decision weights to agents exerting less effort. Consequently, the planner constructs a network that 
narrows the effort gap between the best and worst agents. When f is sufficiently concave and link cost is linear, the planner 
creates a connected quasi-star. The planner establishes one-way links from the best agent (agent 1) to all those who would 
have been isolated and exerting minimum effort xi = φ(0) in efficient networks. Although this design does not eliminate 
inequality, it can significantly reduce it.

4. Decentralized networks are inefficient generalized nested split graphs

We adapt the models of Bala and Goyal (2000), Galeotti and Goyal (2010), and Baetz (2015) to examine the decentralized 
formation of weighted and directed networks. We consider a two-stage network formation game.

Stage 1. Each agent chooses a vector gi = (gi1, gi2, . . . , gi,i−1, gi,i+1, . . . , gin), where gij ≥ 0 is the strength of influence 
from agent j to agent i. Let G ∈Rn×n+ be the matrix that collects the decisions of all agents, with zeros on its main diagonal. 
Let g−i = (g j) j �=i denote the decisions of agents other than i. We use (gi , g−i) to denote G .

Stage 2. Each agent observes G and exerts effort xi ≥ 0. Then, the game ends, and the payoffs for agent i are provided by

ui(x, G) = φ

⎛
⎝∑

j �=i

gi j x j

⎞
⎠ xi −

∑
j �=i

c(gij) − 1

2
x2

i .

Assume φ′ > 0, c′(0) = 0 and c′′ > 0.
In Stage 2, each agent takes G as given and chooses xi that satisfies the best-response condition xi = φ(

∑
j gi j x j). 

Let x(G) be the equilibrium effort profile given G . We call G an equilibrium network if, for each i ∈ N , we have 
ui(x(gi, g−i), gi, g−i) ≥ ui(x(g′

i, g−i), g′
i, g−i) for each g′

i ≥ 0. In other words, if G is an equilibrium network, then (G, x(G))

constitutes a subgame perfect equilibrium of the decentralized network formation game. A network G is (aggregate) efficient
if it maximizes 

∑
i∈N ui(x(G), G); otherwise, it is (aggregate) inefficient.

Let xi = xi(G) and zi = ∑
j gi j x j . By Lemma 3, the first-order condition for gij in an equilibrium network is

∂ui(x(G), G)

∂ gij
= ximiiφ

′(zi)x j − c′(gij) = 0. (9)

This condition implies that all equilibrium networks are GNSGs and inefficient.

Theorem 2. In the decentralized network formation game, every equilibrium network is an inefficient GNSG.

The inefficiency arises through two channels, both stemming from agents’ neglect of externalities on others. First, the 
weight of each link in an equilibrium network is less than the efficient level. To maximize aggregate efficiency we need the 
following condition:

∂
∑

k uk(x(G), G)

∂ gij
= ximiiφ

′(zi)x j +
∑
k �=i

xkmkiφ
′(zi)x j

︸ ︷︷ ︸
Externalities on other agents

− c′(gij) = 0.

An increase in gij not only increases i’s effort and utility but also imposes positive externalities on all those influenced 
directly or indirectly by i. When choosing the weight of a link, agent i ignores these positive externalities and thus chooses 
a link weight less than the aggregate efficient level.

Second, agents may fail to coordinate on a strictly hierarchical network that maximizes agents’ total utilities with the 
same costs as an equilibrium network. Let G∗ be an equilibrium network. Consider the planner’s problem of choosing 
G to maximize 

∑
i ui(x(G), G) subject to 

∑
i

∑
j c(gij) = ∑

i

∑
j c(g∗

i j).24 Does the equilibrium network G∗ also solve this 
planner’s problem? In general, the answer is no. Note φ(

∑
j �=i gi j x j)xi − 1

2 x2
i = 1

2 (xi(G))2. Hence, the planner attempts to 

24 The constraint could be ∑i

∑
j c(gij) ≤ ∑

i

∑
j c(g∗

i j) without changing the results, but the exposition would be lengthier.
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maximize 
∑

i f (xi(G)) where f (xi) = 1
2 x2

i is convex.25 We have solved this problem. By Proposition 1, if f is convex, φ is 
convex or modestly concave, and c is modestly convex, then each optimal network is a strict GNSG in which all agents are 
strictly ordered by link-dominance. In contrast, in an equilibrium network, an agent need not strictly link-dominate anther. 
For example, a complete network with equally weighted links such as that in Fig. 3b can be an equilibrium network, but it 
is not optimal. This comparison demonstrates that due to each agent’s neglect of externalities, agents can fail to coordinate 
on a strictly hierarchical network that maximizes total utilities.

5. Conclusion

To date, various network data sets have provided sufficient information to construct weighted and directed networks 
among the players. Examples include the peer effect data collected by Mas and Moretti (2009), global trade volume data 
used by König et al. (2014), and knowledge spillover data for innovation networks across various industrial fields (Ace-
moglu et al., 2016). However, previous studies on network design problems have predominantly focused on unweighted 
and undirected networks (Belhaj et al., 2016; Hiller, 2017; Corbo et al., 2006; König et al., 2014). In this paper, we address 
the problem of designing a weighted and directed network under complementarities. While prior research has been limited 
to linear agent best-responses and convex objective functions for the planner, we allow for nonlinear best-responses and 
arbitrarily concave objective functions.

We derive three results. First, we generalize the concept of nested split graphs previously defined for unweighted and 
undirected networks to weighted and directed networks by introducing the notion of link-dominance. Second, we show that 
every optimal weighted and directed network under complementarities is a GNSG, regardless of whether the planner’s ob-
jective function is convex or strictly concave. Furthermore, in various environments, optimal GNSGs are strictly hierarchical 
and involve asymmetric links of varying strength, going beyond the domain of unweighted and undirected networks. Conse-
quently, if agents’ payoffs are monotone in effort, then inequality arise endogenously. Third, every equilibrium network in a 
non-cooperative network formation game is an inefficient GNSG. The inefficiency arises because agents choose less weighted 
links than the socially optimal level and because they fail to coordinate on a sufficiently hierarchical structure.

We have assumed that each agent’s effort is unbounded and imposed Assumption 1 to guarantee the existence of a 
unique equilibrium effort profile for each feasible network. One may wonder what will happen if each agent’s effort is 
bounded. Belhaj et al. (2014) show that bounding the effort can lead to multiple equilibria. Thus, while this case is intriguing 
and warrants further investigation, it cannot be easily extrapolated from our current results. Nevertheless, we offer the 
following conjectures. First, Belhaj et al. (2014) have derived several sufficient conditions on the best-response function φ to 
ensure that the equilibrium effort profile is unique for a given network, e.g., when φ is concave. If any of these conditions 
hold, then x(G) exists and is unique. Next, we observe that imposing a bound on effort would not alter the effort ordering 
of agents; it may at most cause some agents who initially exerted strictly more effort to now exert weakly more. Hence, 
link-dominance relationships would still hold, and optimal networks would continue to be GNSGs. However, Proposition 1
could change if the bound on effort is sufficiently restrictive. In that case, optimal networks could be a partially strict GNSG 
such that some agents exert the same maximum effort—they pool at the top.
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Appendix A. Proofs

Proof of Lemma 1. Let φi = φ(
∑

j gi j x j) and � = (φ1, φ2, . . . , φn). That is, �(x, G) ∈Rn is the best-response mapping from 
(x, G) to a (new) effort profile as defined by (3). Let �′ be the n-by-n derivative matrix of � with respect to x, the i jth 
element of which is �′

i j = φ′(
∑

j gi j x j)gij . Consider a feasible G . By the mean value function (e.g., Rudin, 1976, Theorem 
9.19), Assumption 1 implies ‖�(x, G) − �(y, G)‖ < φ′‖G‖|x − y| ≤ d|x − y| for d < 1. Thus, �(·, G) is a contraction. Hence, 
according to the Banach fixed point theorem (Ok, 2011, Ch. C.6), a unique fixed point x(G) exists such that �(x, G) = x. 
By the assumption φ(0) = 1 > 0, we further have x(G) ∈ Rn+ . Next, observe that the spectral radius of �′ , ρ(�′), satisfies 
ρ(�′) ≤ φ′‖G‖ < 1 for each feasible network G . Thus, by Debreu and Herstein (1953), A = [�′ − I] is invertible. It then 

25 Since ∑i

∑
j c(gij) = ∑

i

∑
j c(g∗

i j) is a constant in the planner’s problem, maximizing ∑i ui(x, G) is equivalent to maximizing ∑i [φ(
∑

j �=i gi j x j)xi −
1
2 x2

i ] plus a constant, which results in maximizing ∑i
1
2 (xi(G))2.
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follows from the implicit function theorem (Rudin, 1976, Theorem 9.28) that x(G) is continuously differentiable at each 
feasible G .

Proof of Lemma 2. By Lemma 1, xi(G) is continuous for each feasible G . Thus, π(G) = ∑
i f (xi(G)) is continuous for each 

feasible G . Also, the set of feasible networks is a closed, bounded subset of Rn×n and thus, compact. Hence, by Berge’s 
maximum theorem (Ok, 2011, p. 306), the planner’s problem has a solution.

Proof of Lemma 3. Given the matrix M , we have ∂xk(G)
∂ gij

= ∑
�∈N mk�

∂φ(z�)
∂ gij

= mkiφ
′(zi)x j(G), where the first equality follows 

from the implicit function theorem for vector-valued functions, and the second equality follows from ∂φ(zi)
∂ gij

= φ′(zi)x j and 

the fact that ∂φ(z�)
∂ gij

= 0 for each � �= i. A version of the implicit function theorem can be found in Rudin (1976, Theorem 

9.28) which implies x′(G) = −[�′ − I]−1 ∂�
∂G = M ∂�

∂G , where x′(G) is the n-by-n2 matrix whose (k, i j)-th element is ∂xk(G)
∂ gij

and ∂�
∂G is the n-by-n2 matrix whose (k, i j)-th element is ∂φk

∂ gij
. Substituting ∂xk(G)

∂ gij
= mkiφ

′(zi)x j(G) into (5), we obtain 
M V ij(G) = αi(G)x j(G).

Proof of Lemma 4. First, we prove the formula for αi that we state in the main text.

Lemma 5. Let G be a feasible network, αi = αi(G), xi = xi(G) and zi = ∑
j gi j x j . Then, αi = f ′(xi)φ

′(zi) + ∑
j �=i α j g jiφ

′(zi).

Proof of Lemma 5. Given Assumption 1, we have 
∑∞

l=0(�
′)l = [I − �′]−1 = M . Hence M�′ = (∑∞

l=0(�
′)l

)
�′ = ∑∞

l=1(�
′)l =

M − I . Therefore, M = M�′ + I . Thus, mii = ∑
k mikφ

′
k gki + 1, and for each i, j ∈ N , i �= j, mij = ∑

k mik�
′
kj = ∑

k mikφ
′(zk)gkj . 

It follows that

αi = f ′(xi)miiφ
′(zi) +

∑
k �=i

f ′(xk)mkiφ
′(zi)

= f ′(xi)φ
′(zi) +

∑
k

f ′(xk)
(∑

j �=i

mkjφ
′
j g ji

)
φ′(zi)

= f ′(xi)φ
′(zi) +

∑
j �=i

(∑
k

f ′(xk)mkjφ
′
j

)
g jiφ

′(zi)

= f ′(xi)φ
′(zi) +

∑
j �=i

α j g jiφ
′(zi). �

In the following we assume c′′ > 0. Let μ be the Lagrangian multiplier for the planner’s optimization problem. We show 
the first two statements of Lemma 4; the third statement follows immediately from the first two.

First, suppose αi ≥ α j . To show gik ≥ g jk for each k �= i, j, take an agent k ∈ N, k �= i, j. Then, M V ik = αi xk ≥ α j xk = M V jk . 
If g jk = 0, then trivially gik ≥ g jk . If g jk > 0, then by the KT (Kuhn-Tucker) condition, μc′(gik) ≥ αi xk ≥ α j xk = μc′(g jk), again 
implying gik ≥ g jk given c′′ > 0. To show xi(G) ≥ x j(G), suppose that the opposite is true. Then, 

∑
k gikxk <

∑
k g jkxk . Since 

gik ≥ g jk for each k �= i, j, we have gijx j < g ji xi ; thus, gij < g ji . However, according to the KT condition and α j xi < αi x j , we 
have μc′(g ji) ≤ μc′(gij), implying gij ≥ g ji —a contradiction. Hence, xi(G) ≥ x j(G).

Second, suppose xi ≥ x j . To show gki ≥ gkj for each k �= i, j, take an agent k ∈ N, k �= i, j. Then, M Vki = αkxi ≥ αkx j =
M Vkj . If gkj = 0, then trivially gki ≥ gkj . If gkj > 0, then by the KT condition, μc′(gki) ≥ μc′(gkj). This implies gki ≥ gkj
given c′′ > 0. Next, to show that αi ≥ α j , we suppose αi < α j for contradiction. Then, gik ≤ g jk for each k �= i, j, and xi ≤ x j . 
Hence, xi = x j , and gki = gkj for each k �= i, j. Therefore, by applying Lemma 5, we obtain αi − α j = (α j g ji − αi gi j)φ

′(zi). 
Hence, αi < α j implies α j g ji < αi gi j , leading to gij > g ji . However, by the suppositions xi ≥ x j and αi < α j , we have 
M V ij = αi x j < α j xi = M V ji , implying gij ≤ g ji – a contradiction. Hence, we have αi ≥ α j .

Proof of Proposition 1. We consider a feasible network G with gij > 0 for each i �= j and suppose for contradiction that G
is optimal and xi(G) = x j(G) for some i �= j. To simplify notations and without loss of generality, we assume x1(G) = x2(G)

(the indexes need not reflect the ranking of efforts). Then we show that there is an alternative feasible network Gε such 
that π(Gε) > π(G) – hence a contradiction. Let ε > 0. The network Gε = (gε

i j) is obtained from G = (gij) by reallocating 
weights:

gε
31 = g31 + ε, gε

32 = c−1(c(g31) + c(g32) − c(gε
31)),

gε
13 = g13 + ε, gε

23 = c−1(c(g13) + c(g23) − c(gε
13));
568
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we let gε
i j = gij for all other elements in Gε . The variable ε > 0 is chosen sufficiently small so that gε

32 and gε
23 are strictly 

positive. By construction, 
∑

i

∑
j c(gε

i j) =
∑

i

∑
j c(gij) ≤ b. The proof has four steps. Steps 1 and 2 establish some basic 

facts. Steps 3 and 4 examine the derivatives π ′ ≡ ∂π(Gε )
∂ε and π ′′ ≡ ∂π ′

∂ε respectively and show that if h and φ6 are not too 
concave and c not too convex, then π ′ = 0 and π ′′ > 0 at ε = 0. It then follows from the Taylor’s theorem (Rudin, 1976, 
Theorem 5.15) that π(Gε ) > π(G) for a sufficiently small ε > 0. Let F be the set of feasible networks.

Step 1. We show α1(G) = α2(G), g j1 = g j2 and g1 j = g2 j for each j ≥ 3, and g12 = g21. Lemma 4 directly implies g j1 = g j2
and g1 j = g2 j for each j ≥ 3, and α1 = α2. To show g12 = g21, we apply Lemma 5 and obtain α1 − α2 = α2 g21φ

′(z1) −
α1 g12φ

′(z2) = (g21 − g12)α2φ
′(z1) = 0. Hence, g21 = g12.

Step 2. Given c(gε
32) + c(gε

31) = c(g31) + c(g32), taking derivatives w.r.t. ε we obtain c′(gε
32)

∂ gε
32

∂ε + c′(gε
31) = 0. Thus,

∂ gε
32

∂ε
= − c′(gε

31)

c′(gε
32)

, implying
∂ gε

32

∂ε

∣∣∣
ε=0

= − c′(g31)

c′(g31)
= −1.

Further, c′′(gε
32)(

∂ gε
32

∂ε )2 + c′(gε
32)

∂ gε
32

∂ε + c′′(gε
31) = 0. Hence, ∂2 gε

32
∂ε2 |ε=0 = − 2c′′(g31)

c′(g31)
. Let μ be the Lagrangian multiplier w.r.t. 

G . Using the fact μ = αi(G)x j(G)

c′(gij)
for all networks satisfying the KT first-order conditions we obtain an upper bound of μ: 

μ̄ = αH xH

c′
(

c−1( b
n(n−1)

)
) , where αH = maxG∈F ,i∈N αi(G) and xH = maxG∈F ,i∈N xi(G). Hence, c′(g31) = α3(G)x1(G)

μ ≥ αL xL/μ̄, where 

αL = minG∈F ,i∈N αi(G) > 0 and xL = minG∈F ,i∈N xi(G) > 0. Since αi(G) and xi(G) are continuous in G and F is compact, 
the maximums and the minimums exist. It follows that, by c′′ ≤ t ,

∂2 gε
32

∂ε2

∣∣∣
ε=0

= −2c′′(g31)

c′(g31)
≥ − 2μ̄

αL xL
t.

Similarly, by gε
13 + gε

23 = c(g13) + c(g23), we obtain ∂ gε
23

∂ε = − c′(gε
13)

c′(gε
23)

, implying ∂ gε
23

∂ε |ε=0 = − c′(g13)
c′(g13)

= −1 and ∂2 gε
23

∂ε2 |ε=0 =
− 2c′′(g13)

c′(g13)
≥ − 2μ̄

αL xL t . Hence, by choosing a sufficiently small t , ∂2 gε
32

∂ε2 |ε=0 and ∂2 gε
23

∂ε2 |ε=0 can be arbitrarily chose to zero.

Step 3. We show π ′|ε=0 = 0. Let xi = xi(Gε) and αi = αi(Gε). Since M V ij(Gε) = αi x j and gε
i j = gij for all links unrelated to 

agents 1, 2 and 3, we have

π ′ =
∑

i

∑
j

αi x j

∂ gε
i j

∂ε
= α1x3 + α2x3

∂ gε
23

∂ε
+ α3x1 + α3x2

∂ gε
32

∂ε
.

At ε = 0, we have x1 = x2, α1 = α2, and ∂ gε
23

∂ε = ∂ gε
32

∂ε = −1. Hence, π ′|ε=0 = 0.

Step 4. We show that there are lower bounds for h′′ and φ′′ to ensure π ′′|ε=0 > 0. Let A ≡ α1 +α2
∂ gε

23
∂ε , B ≡ x1 +x2

∂ gε
32

∂ε , α′
i ≡

∂αi(Gε )
∂ε , and x′

i ≡ ∂xi(Gε )
∂ε . Then π ′ = Ax3 + Bα3, and A|ε=0 = B|ε=0 = 0. Thus, π ′′|ε=0 = A′x3 + B ′α3. Let α ≡ (

α′
1 − α′

2

) |ε=0

and x ≡ (
x′

1 − x′
2

) |ε=0. Then,

π ′′|ε=0 = (α + α2
∂2 gε

23

∂ε2
)x3 + (x + x2

∂2 gε
32

∂ε2
)α3

≥ αx3 + xα3 − t
2μ̄

αL xL
(α2x3 + α3x2).

At ε = 0, we have

x′
1 = φ′(z1)

(∑
j≥4

g1 j x
′
j + g13x3 + g13x′

3 + g12x′
2

)

x′
2 = φ′(z2)

(∑
j≥4

g2 j x
′
j − g23x3 + g23x′

3 + g21x′
1

)
.

By Step 1, z1 = z2, g j1 = g j2 and g1 j = g2 j for each j ≥ 3, and g12 = g21. Thus, we obtain

x = (
x′

1 − x′
2

) |ε=0 = 2φ′(z1)x3

1 + φ′(z1)g12
> 0.

Because x is a combination of continuous functions of G and F is compact, x is bounded below and away from zero. 
Denote L

x ≡ infG∈F x . Further, let z′
i ≡ ∂zi(Gε )

∂ε . Since x′
i = φ′(zi)z′

i , we have z ≡ (
z′

1 − z′
2

) |ε=0 = 2x3
1+φ′(z1)g12

, which is 
positive and bounded above.
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Finally, let h(z) = f (φ(z)). By Lemma 5, at ε = 0,

α′
1 =h′′(z1)z′

1 + φ′(z1)
(∑

j≥4

α′
j g j1 + α′

3 g31 + α3 + α′
2 g21

)
+

∑
j

α j g j1φ
′′(z1)z′

1

α′
2 =h′′(z2)z′

2 + φ′(z2)
(∑

j≥4

α′
j g j2 + α′

3 g32 − α3 + α′
1 g12

)
+

∑
j

α j g j2φ
′′(z2)z′

2.

Thus,

α = (
α′

1 − α′
2

) |ε=0 = [h′′(z1) + φ′′(z1)
∑

j α j g j1]z + 2α3φ
′(z1)

1 + φ′(z1)g12
.

If h′′(z1) + φ′′(z1) 
∑

j α j g j1 ≥ 0, then α > 0, and thus by choosing a sufficiently small t > 0, we obtain

π ′′|ε=0 > xα3 − t
2μ̄

αL xL
(α2x3 + α3x2) ≥ 1

2
L

xα
L > 0.

Suppose h′′(z1) + φ′′(z1) 
∑

j α j g j1 < 0 but h′′ ≥ −r and φ′′ ≥ −r for some r > 0. Then, [1 + φ′(z1)g12]α ≥ −r(1 +∑
j α j g j1)z + 2α3φ

′(z1). Since z is bounded above and α3φ′(z1) is bounded below and away from zero, we again have 
α > 0 by choosing a sufficiently small r. Hence, there are sufficiently small thresholds r > 0, s = r and t > 0 such that if 
h′′ ≥ −r, φ′′ ≥ −s and c′′ ≤ t then π ′′|ε=0 > 1

2 L
xα

L > 0 even if h′′ and φ′′ are negative.

Step 5. We have shown that if xi(G) = x j(G) then π ′|ε = 0 and π ′′|ε > 0 so that there is ε > 0 such that π(Gε) > π(G). 
Now suppose xi(G) > x j(G). Then M Vki = αkxi > αkx j = M Vkj , and thus gki > gkj , for each k �= i, j. Also, by Lemma 4, 
xi > x j implies αi > α j . Thus, for each k �= i, j, we have M V ik = αi xk > α j xk = M V jk , and thus gki > gkj . Hence, i �G j. This 
completes the proof of Proposition 1.

Proof of Proposition 2. Consider a feasible network G and suppose x j1 (G) ≥ x j2 (G) ≥ · · · ≥ x jn (G). We say that Ĝ first-order 
stochastically dominates (FSD) G if for each i ∈ N and each k̄ ∈ N\{i}, 

∑k̄
k=1 ĝi, jk ≥ ∑k̄

k=1 gi, jk . That is, given the status quo 
effort profile x(G), if each agent in network Ĝ puts greater weights on inward links leading from neighbors with greater 
efforts, then Ĝ FSD G . We write x̂ ≥ x if x̂i ≥ xi for each i ∈ N .

Lemma 6. If G and Ĝ are both feasible, and Ĝ FSD G, then x(Ĝ) ≥ x(G).

Proof. Since x(G) exists and is unique for each feasible G given Assumption 1, as a fixed point to the best-response mapping 
�(·, G) we obtain x(G) by x(G) = sup{x|�(x, G) ≥ x}. Let x = x(G). Then, given Ĝ FSD G , we have for each i ∈ N:

φ(
∑
j∈N

ĝi jx j) = φ(
∑
k∈N

ĝi, jk x jk ) ≥ φ(
∑
k∈N

gi, jk x jk ) = φ(
∑
j∈N

gi, j x j).

Hence, �(x, Ĝ) ≥ �(x, G) = x(G). Therefore, x(G) ∈ {x|�(x, Ĝ) ≥ x}. Thus, x(Ĝ) = sup{x|�(x, Ĝ) ≥ x} ≥ x(G). �
In the remaining steps, suppose that G is optimal and that G is not an inward star or an outward quasi-star. Without 

loss of generality, assume x1(G) ≥ x2(G) ≥ · · · ≥ xn(G). Consider Ĝ obtained from G such that 1) ĝ12 = ∑
j �=1 g1 j , 2) ĝi1 =∑

j �=i gi j for each i ∈ N, i ≥ 2, and 3) ĝ1 j = 0 for each j �= 2 and ĝi j = 0 for each i ≥ 2, j �= 1. By such construction we have ∑
j ĝi j = ∑

j gi j for each i ∈ N so that 
∑

i

∑
j c(ĝi j) = ∑

i

∑
j c(gij).

Step 1. For i = 1, observe 
∑k

j=2 ĝ1 j = ĝ12 = ∑
j≥2 g1 j ≥ ∑k

j=2 g1 j for each k ≥ 2. For each i ≥ 2, observe 
∑k

j=1 ĝi j = ĝi1 =∑
j gi j ≥ ∑k

j=1 gij for each k �= i. Hence, Ĝ FSD G .

By Lemma 6 it follows that x(Ĝ) ≥ x(G). Since G is already optimal, we obtain x(Ĝ) = x(G), and that Ĝ is also optimal.

Step 2. That G is not an inward star or an outward quasi-star implies: 1) gik > 0 for some i ∈ N, k ≥ 3, or 2) gk2 > 0 for 
some k ≥ 3, or both. In either case, we show that there are contradictions. In the following, let xi = xi(G) for each i ∈ N .

Case 1: gik > 0 for some i ∈ N, k ≥ 3. Without loss of generality, assume gi3 > 0 for some i. If g13 > 0, then by x1(Ĝ) =
x1(G) we have φ(ĝ12x2) = φ(

∑
j �=3 g1 j x2 + g13x2) = φ(

∑
j �=3 g1 j x j + g13x3). But x2 ≥ x j for each j ≥ 3. Hence, x2 = x3. If 

gi3 > 0 for some i ≥ 2, then φ(ĝi1x1) = φ(
∑

j �=3 gij x1 + gi3x1) = φ(
∑

j �=3 gij x j + gi3x3). Hence, x1 = x3. Since x1 ≥ x2 ≥ x3, 
we again have x2 = x3.

However, by x2 = x3, we have φ(ĝ21x1) = φ(ĝ31x1), implying ĝ21 = ĝ31. First, if ĝ21 = ĝ31 > 0, then M V 21(Ĝ) = M V 31(Ĝ), 
leading to α2(Ĝ)x1 = α3(Ĝ)x1. Hence, α2(Ĝ) = α3(Ĝ). Then, by Lemma 5, a contradiction follows: in network Ĝ ,

α2(Ĝ) = f ′(x2)φ
′(z2) + α1(Ĝ)ĝ12φ

′(z2) > f ′(x3)φ
′(z3) = α3(Ĝ).
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Second, if ĝ21 = ĝ31 = 0, then since x2 ≥ xi for each i ≥ 2 we have ĝi1 = 0 for each i ≥ 2. Hence, gij = 0 for each i ≥ 2, j ∈ N , 
so that G is an inward star – contradicting our suppositions.

Case 2: gk2 > 0 for some k ≥ 3. Then, by xk(Ĝ) = xk(G), we have φ(
∑

j gkj x1) = φ(
∑

j gkj x j), implying x1 = x2. Hence, 
ĝ12 = ĝ21. Network G is optimal. Thus, it is not empty. Therefore, ĝ12 = ĝ21 > 0. It follows that α1(Ĝ)x2 = α2(Ĝ)x1, implying 
α1(Ĝ) = α2(Ĝ). However,

α1(Ĝ) ≥ f ′(x1)φ
′(z1) + α2(Ĝ)ĝ21φ

′(z1) + αk(Ĝ)ĝk1φ
′(z1),

α2(Ĝ) = f ′(x2)φ
′(z2) + α1(Ĝ)ĝ12φ

′(z2),

and thus,

α1(Ĝ) − α2(Ĝ) ≥ αk(Ĝ)ĝk1φ
′(z1)

1 + ĝ21φ′(z1)
> 0

since ĝk1 ≥ gk2 > 0. Hence, we obtain a contradiction, completing our proof of Proposition 2.

Proof of Remark 2. First, suppose f ′′ = η > 0. Let G be optimal. Suppose G is an outward quasi-star, with x1(G) ≥ x2(G) >
xi(G) for each i ≥ 3. Then, by the convexity of f , we immediately have gi1 = 0 for each i ≥ 3; otherwise we can reallocate 
the weight from gi1 to g21 to achieve a strict improvement (agents 1 and 2 will strictly improve and the improvement 
is strictly greater than any i ≥ 3’s reduction). Hence, the links between 1 and 2 exhaust all resources: g12 + g21 = 1. Let 
αi = αi(G) and xi = xi(G). Then, given x2 ≥ φ(0) = 1,

M V 12 − M V 21 = α1x2 − α2x1 = (α1 − α2)x2 − (x1 − x2)α2

≥ α1 − α2 − (x1 − x2)α2.

Since α1 = λ f ′(x1) + λα2 g21 and α2 = λ f ′(x2) + λα1 g12, we obtain α1 ≤ λ
f ′(x1)

1−λg21
, α2 ≤ λ f ′(x2) + λ2 f ′(x1)

1−λg21
, and

α1 − α2 = (1 − λg12)α1 − λ f ′(x2)

≥ λ
[
(1 − λg12) f ′(x1) − f ′(x2)

]
.

Also, by x1 = 1 + λx2 and x2 = 1 + λx1 we obtain x1 − x2 = λ
g12−g21

1−λ2 g12 g21
. By the Taylor’s theorem, we have f ′(x1) = f ′(x2) +

η(x1 − x2). Hence,

(M V 12 − M V 21)/λ
2

≥ 1

λ
(1 − λg12)

[
f ′(x2) + η(x1 − x2)

] − 1

λ
f ′(x2) − 1

λ
(x1 − x2)

(
f ′(x2) + λ

f ′(x1)

1 − λg21

)

= − g12 f ′(x2) + (1 − λg12)η
g12 − g21

1 − λ2 g12 g21
− g12 − g21

1 − λ2 g12 g21

(
f ′(x2) + λ

f ′(x1)

1 − λg21

)
≡Δ(λ).

Since limλ→0 x2 = 1 and g21 = 1 − g12, we have

lim
λ→0

Δ(λ) = η(g12 − g21) − (2g12 − g21) f ′(1) = η(2g12 − 1) − (3g12 − 1) f ′(1).

Thus, for each g12 > 1
2 , we have limλ→0 Δ(λ) > 0 for each sufficiently large η. Moreover, if η > 3

2 f ′(1) and limλ→0 Δ(λ) ≥ 0
for some g12, then limλ→0 Δ(λ) > 0 for each network G ′ with g′

12 > g12, which implies that limλ→0 Δ(λ) is convex in g12. 
Thus, there are sufficiently small λ and sufficiently large η such that M V 12 − M V 21 > 0, and maxπ(G) is achieved at either 
g12 = g21 = 1

2 or g12 = 1.

Next, let G denote the network with g12 = g21 = 1
2 and Ĝ denote the network with ĝ12 = 1. Let xi = xi(G) and x̂i = x̂i(G). 

Then, x1 = x2 = 1
1−λ/2 , x̂1 = 1 + λ, and x̂2 = 1. Hence,

π(Ĝ) − π(G) = [ f (x̂1) − f (x1)] + [ f (1) − f (x2)]
= f ′(x1)(x̂1 − x1) + 1

2
f ′′(x1)(x̂1 − x1)

2 + f ′(x1)(1 − x1) + 1

2
f ′′(x1)(1 − x1)

2

= 1

2
η

[
(x̂1 − x1)

2 + (1 − x1)
2
]
− f ′(x1)

(
2x1 − x̂1 − 1

)
= 1

2
ηλ2

[
1 − λ +

(
1

2 − λ

)2
]

− f ′
(

1

1 − λ/2

)
λ2 1

2 − λ
. (10)
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Simplifying, we obtain π(Ĝ) − π(G) > 0 if and only if

η > D(λ) ≡
2 f ′

(
2

2−λ

)
(2 − λ)(1 − λ) − 1/(2 − λ)

. (11)

We have D(λ) strictly increasing in λ, since f ′′ > 0 and taking the derivative of the denominator w.r.t. λ results in 2λ −
3 + 1

(2−λ)2 < 0 given λ < 1. It follows that there are r > 0 and s > 0 such that if λ < r and η > s, then the inward star Ĝ

outperforms any outward quasi-star G .
Finally, observe from equation (10) and inequality (11) that it is sufficient to have η < D(λ) to ensure that π(Ĝ) < π(G)

and inward stars are outperformed by the outward quasi-star with g12 = g21 = 1
2 . This completes our proof.

Proof of Theorem 2. Step 1: Since ∂ui(x,G)
∂xi

= φ
(∑

j∈N gij x j

)
− xi , x(G) satisfies the first-order condition: xi = φ(

∑
j gi j x j)

for each i ∈ N . Hence, ∂xk(G)
∂ gij

= mkiφ
′(zi)x j , where zi = ∑

j∈N gij x j . Thus,

dui(x(G), G)

dgij
= xi

∂xi(G)

∂ gij
− c′(gij) = ximiiφ

′(zi)x j − c′(gij).

It follows that if G is an equilibrium network, then G satisfies{
ximiiφ

′(zi)x j ≤ c′(gij) for each i, j ∈ N, j �= i;
ximiiφ

′(zi)x j = c′(gij) if gij > 0.
(12)

Step 2: We show that every equilibrium network is a GNSG. Let G be an equilibrium network, and consider i �= j such that 
xi ≥ x j . Then, for each k �= i, j, xkmkkφ

′(zk)xi ≥ xkmkkφ
′(zk)x j . If gkj = 0, then trivially gki ≥ gkj . If gkj > 0, then c′(gki) ≥

xkmkkφ
′(zk)xi ≥ xkmkkφ

′(zk)x j = c′(gkj); thus gki ≥ gkj . In either case, gki ≥ gkj .
Next, suppose that gik < g jk for some k �= i, j. Then ximiiφ

′(zi)xk ≤ x jm jjφ
′(z j)xk . Thus ximiiφ

′(zi) ≤ x jm jjφ
′(z j). There-

fore, ximiiφ
′(zi)xk′ ≤ x jm jjφ

′(z j)xk′ , and gik′ ≤ g jk′ for each k′ �= i, j. Additionally, ximiiφ
′(zi)x j ≤ x jm jjφ

′(z j)xi , implying 
gij ≤ g ji . But then, xi = φ(

∑
k′ �=i, j gik′ xk′ + gij x j) < φ(

∑
k′ �=i, j g jk′ xk′ + g ji xi) = x j , which is a contradiction. Hence, xi ≥ x j

implies gik ≥ g jk for each k �= i, j.
Therefore, i 
G j. Since i and j are taken arbitrarily, G is a GNSG.

Step 3: Let W (G) ≡ ∑
i∈N ui(x(G), G). Then, W (G) = 1

2

∑
i xi(G)2 −∑

i

∑
j c(gij). If G is efficient, then for each i, j ∈ N, i �= j,

∂W (G)

∂ gij
=

∑
k

xkmkiφ
′(zi)x j − c′(gij) = 0. (13)

Since xkmkiφ
′(zi)x j > 0 for each k, i, j ∈ N , condition (12) and equation (13) cannot simultaneously hold. Hence, every 

equilibrium network is inefficient.

Appendix B. Centralities in weighted and directed networks

In the following I contrast link-dominance ordering with all centrality measures considered in König et al. (2014) using 
examples of GNSGs. The comparison encompasses degree, closeness, eigenvector, Bonacich, and betweenness centralities. 
Their definitions in the context of weighted and directed networks are adapted from Jackson (2008) and Opsahl et al. (2010). 
Notably, with directed links, several centrality measures (degree, closeness, and eigenvector) require separate evaluation for 
each node by distinguishing between an inward measure (e.g., in-degree) and an outward measure (e.g., out-degree). Table 1
presents and compares the various centrality measures for the two networks shown in Fig. 2 and for outward quasi stars in 
general which are optimal networks under linear link cost. The comparisons show that the inward measure of a centrality 
can differ significantly from its outward measure and thus at least one of them usually does not align with link-dominance.

• Bonacich centrality: Bonacich centrality is a solution x = (x1, . . . , xn) to the linear system x = a + bGx, where a =
(a1, . . . , an) is the base value for each node. When the best-response function is linear such as xi = 1 + λ 

∑
j gi j x j , 

Bonacich centrality exactly equals the equilibrium effort of each agent, with b = λ and base value ai = 1 for each i.
• Closeness centrality: In a weighted and directed network, inward closeness centrality for i ∈ N can be defined as C in

i =∑
j �=i

1
�i j

, where �i j = min( 1
gik′ + · · · + 1

gkj
) is the sum of the inverse of the weights along the path ( j, k, . . . , k′, i) and it 

is minimized over all paths leading from j to i. If there is no path leading from j to i, we set �i j = ∞ and 1
�i j

= 0. The 
idea is that 1

gij
measures the resistance for the directed link from j to i, and 1

gik′ + · · · + 1
gkj

measures the resistance 

of the directed path ( j, k, . . . , k′, i) from j to i. The minimum �i j = min( 1
gik′ + · · · + 1

gkj
) over all paths from j to i then 

generalizes the distance measure of the shortest path between two nodes in a unweighted graph. The larger is �i j , the 
572



X. Li Games and Economic Behavior 140 (2023) 556–574
Table 1
Comparisons of centralities.

Nodes in Fig. 2a Nodes in Fig. 2b Outward quasi-stars
1 2 3 1 2 3 1 2 j ≥ 3

Link-dominance ordering 1 �G 2 �G 3 1 �G 2 �G 3 1 
G 2 �G j
Equilibrium effort xi 1.22 1.26 1.31 1.37 1.27 1.15 x1 ≥ x2 > x j

Aggregate influence αi 1.37 1.27 1.15 1.22 1.26 1.31 α1 ≥ α2 > α j

Bonacich centrality b = λ, a = 1 Same as xi for linear best-response
In-degree 0.17 0.21 0.25 0.31 0.21 0.11 g12 g21 g j1
Out-degree 0.31 0.21 0.11 0.17 0.21 0.25 g21 + ∑

j g j1* g12* 0
Inward closeness 0.04 0.04 0.06 0.08 0.05 0.03 g12 g21 g31

Outward closeness 0.08 0.05 0.03 0.04 0.04 0.06 g21 + ∑
j g j1* g12* 0

Betweenness 0 0 0 0 0 0 1 0 0
Inward eigenvector centrality 0.50 0.563 0.66 0.73 0.58 0.36 0.70 0.64 0.22
Outward eigenvector centrality 0.73 0.58 0.36 0.50 0.56 0.66 0.67 0.74 0

In computing xi and αi for the two graphs in Fig. 2 presented in the main text, I assume xi = 1 + λ ∑ j gi j x j with λ = 0.1 and the planner’s objective 
function being π(G) = ∑

i xi(G). The last three columns examine optimal GNSGs under linear link costs c(gij) = gij , with eigenvector centralities calculated 
for G4 in Fig. 5 in the manuscript. Bold text indicates the most central agent based on each centrality measure. The * symbol highlights that the most central 
agent measured by out-degree centrality and outward closeness can be either agent 1 or agent 2 in an optimal GNSG (last three columns), depending on 
the planner’s objective function.

more distant two nodes are, and the more resistance there is when traveling from one to another. Similarly, outward 
closeness centrality is defined by Cout

i = 1/ 
∑

j �= � ji .
• Betweenness centrality: In an unweighted network, betweenness centrality is defined by the fraction of shortest paths 

that go through the node of focus. In a weighted and directed network, given that the resistance of a path is defined 
by 1

gik′ + · · · + 1
gkj

and the “shortest” path from j to i can be defined by the path with the least resistance �i j =
min( 1

gik′ + · · · + 1
gkj

), let Pij(k) denote the number of paths from j to i with least resistance (over all paths from j to 
i), and Pij(k) denote the number of least resistance paths from j to i that go through k. Then, following Opsahl et al. 

(2010), we can define the betweenness centrality for i by Bi =
∑

k �= j;i /∈{k, j} Pkj(i)∑
k �= j;i /∈{k, j} Pkj

; since this definition has considered paths 
connecting any pair of nodes from both directions, there is no distinction between outward betweenness centrality and 
inward betweenness centrality.

• Eigenvector centrality: Let δ > 0 be the largest eigenvalue of G . Then inward (right-hand) eigenvector centrality is 
defined by ein

i = ∑
j �=i gi jein

j , where ein = (ein
1 , . . . , ein

n ) solves δein = Gein . Similarly, onward (left-hand) eigenvector cen-

trality is defined by eout
i = ∑

j �=i gi jeout
j , where eout = (eout

1 , . . . , eout
n ) solves δeout = eout G .

Examples presented in Table 1 yield two observations. First, degree, closeness, and eigenvector centralities can already yield 
distinct orderings based on their inward measures and outward measures, even while maintaining the same link-dominance 
ordering. This suggests that we cannot generally expect inward centrality measures to coincide with their outward counter-
parts in a generalized nested split graph (GNSG), nor can we expect them to consistently align with link-dominance. Second, 
according to Theorem 1 in the main text, link-dominance ordering 
G necessarily aligns with the ordering based on equi-
librium effort xi(G) and aggregate influence αi(G) in a GNSG. Furthermore, the examples show that for optimal GNSGs 
under linear link cost, centralities of Bonacich, in-degree, inward closeness, and inward eigenvector induce the same order-
ing as link-dominance. However, out-degree, outward closeness, and outward eigenvector centralities still produce different 
orderings.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2023 .04 .010.
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