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Abstract

This paper examines the formation of influencer networks in user-generated content

markets. Players decide whether to provide content, its provision level, and whom to fol-

low. Each strict equilibrium network is a nested upward-linking network where different

levels of influencers can co-exist, with those at higher tiers providing higher levels of

content and being followed by players in all lower tiers. Under a wide range of param-

eters, all payoff-dominant strict equilibria conform to the law of the vital few: a small

yet significant proportion of players provide all the content. However, unlike previous

models where the number of influencers is limited and their proportion diminishes rapidly

to zero, the complementarity between influence and content provision causes the number

of influencers to grow indefinitely with the population. Further, for sufficiently large

populations, a single nested upward-linking network connecting all players can emerge,

even when players have heterogeneous preferences over content categories.
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1 Introduction

Digital and virtual technologies have developed rapidly and relentlessly in recent years.

One major product of this development is the rise of digital content and knowledge sharing

platforms such as YouTube, TikTok, Quora, and Stack Overflow. These platforms have become

deeply embedded in modern life worldwide. For instance, YouTube is estimated to have over

2.5 billion monthly active users in 2022 (Statista, 2023), implying that more than one in four

people worldwide actively engage with the platform as either a content provider, a consumer,

or both.

This paper examines the choices and network structures arising in these large-scale,

decentralized markets for user-generated content. Besides low entry barriers (Burgess &

Green, 2018; Cunningham et al., 2016; Mohan, 2022) and the non-rivalry of digital content

sharing (Iyer & Katona, 2016), our model captures two distinct features of these social media

markets ignored by previous work. First, our model captures the complementarity between

influence status and content provision: players with a larger follower base have stronger

motivations to provide higher quality of content (Zhang & Zhu, 2011), which in turn attracts

more followers (Pagan et al., 2021). This complementarity arises from one of the defining

features of the influencer economy (Cong & Li, 2023), namely, providing high level of content

to achieve superior influence status can bring significant benefits to content providers both

psychologically (Marwick, 2015; Lampel & Bhalla, 2007; Toubia & Stephen, 2013) and

financially (Bojkov, 2023; Duffy, 2020; Brown & Freeman, 2022).1 These strong incentives

motivate influencers with a large follower base to provide high quality of content.2

Second, our model accommodates the possibility of non-reciprocal relationships. It is

found that following and content consumption relationships are often non-reciprocal in online

sharing networks. For instance, most following relationships on Twitter are non-reciprocal,

and the most-followed users typically do not follow many others (Wu et al., 2011). Similarly,

influencers on Instagram are unlikely to follow many others, whereas general users on average

have a large number of followees (Kim et al., 2017). This low level of reciprocity in online

sharing networks contrasts sharply with traditional social networks or trading networks which

comprise primarily reciprocal links, and has not been fully accounted for by previous research.

We show that introducing the complementarity between influence and content provision

1The top 10 most paid YouTubers in 2021 were estimated to have earned a total of 304.5 million US dollars
(Brown & Freeman, 2022).

2Throughout the paper, we refer to the quality of content as subjective, judged based on consumers’ revealed
preferences. We set aside the problem of whether a piece of “high-quality” content ultimately benefits individuals
or necessarily obtains the truth.
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Figure 1: A nested upward-linking network with multiple levels of influencers. Player 1 is the
top-level influencer followed by all others and providing the highest level of content. Players
2 and 3 are low-level influencers followed only by the three pure consumers at the bottom tier.

and the possibility of non-reciprocal relationships has significant impacts on network struc-

ture, the distribution of influencers, and the influencers’ payoffs relative to pure consumers.

Moreover, the results provide explanations for some regularities of real-world social media

networks that are difficult to be explained by previous models.

The closest work to ours is Galeotti & Goyal (2010). As in Galeotti & Goyal (2010),

our model is a game of complete information among n players who simultaneously choose

whether to provide content, determine its provision level, and decide whose content to follow.3

However, we depart from Galeotti & Goyal (2010) in a key aspect: we incorporate the

complementarity between influence status and content provision. In our model, players gain

benefits from having a larger number of followers. These benefits, in reality, may represent

followers’ voluntary monetary transfers. Further, as in reality, the transfers increase with the

extent to which the provided content fulfills the followers’ needs, the benefits from followers

are assumed to increase with the content provision level.4 Consequently, influential players–

those with more followers–are motivated to provide a higher level of content, which attracts

more followers in equilibrium.

First, the complementarity leads to a multi-level, nested hierarchy: every strict equilibrium

network is a nested upward-linking network (Proposition 1), such that players endogenously

sort into multiple tiers, with those at higher tiers providing higher levels of content and

followed by all those at lower tiers. Figure 1 displays a nested upward-linking network. In this

3By following a player, we mean actual consumption of the player’s provided content.
4In the main model, for tractability, we incorporate the benefits obtained from followers into the utility

function as a multiplication of the number of followers and the content provision level. In Section 4, we
endogenize this complementarity and explicitly model the transfers between players in a network formation
model with transfers, with the cost of increased complexity.
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network, multiple levels of influencers co-exist. While top-level influencers have a significant

number of followers and are incentivized to provide the highest level of content, low-level

influencers in the middle tier provide a necessary level of content to attract only the pure

consumers at the bottom tier. As players in each tier are followed by all players in each lower

tier, players’ follower sets are nested and ordered by their content provision levels. Thus, our

result provides an explanation for one of the most basic observations regarding social media

networks, namely, different levels of influencers can co-exist even when searching for the

most prominent influencers involves little difficulty (Bakshy et al., 2011; Cha et al., 2010;

Duffy, 2020; Bärtl, 2018). Furthermore, our finding of upward-linking means that players

never follow a player in a lower tier. Thus, most links are non-reciprocal, which explains the

low reciprocity of online sharing networks (Kim et al., 2017; Wu et al., 2011).

Second, we examine whether the number of influencers can increase steadily with the

population or if their proportion inevitably declines. This question is important as the con-

centration of influence could impact the distribution of benefits derived from social media

and affect the concentration and diffusion of (mis-)information (Golub & Jackson, 2010a,b;

Yanagizawa-Drott, 2014; Muller & Peres, 2019; Becker et al., 2017; Bakshy et al., 2011;

Jackson et al., 2016). Further, the inquiry pertains to the capacity of the influencer market,

which is of interest to both individual users aspiring to become influencers and platform

providers planning to manipulate the share of influencers to maximize profits.5

Unlike the result of previous work, we find that the complementarity between influence

and content provision causes the number of influencers to increase systematically with the

population. Specifically, we identify two bounds. The first is an upper bound on the proportion

of influencers over all strict equilibria. As the exogenous marginal benefit parameter of content

consumption decreases, this bound decreases and can be arbitrarily small (Proposition 2).

However, there also exists a lower bound on the proportion of influencers over all payoff-

dominant strict equilibria. This lower bound is increasing in the marginal benefit of content

consumption and can be strictly positive, regardless of the population size (Proposition 3).

Thus, as the population grows, the number of influencers also increases indefinitely. This

finding contrasts sharply with Galeotti & Goyal (2010). In their model, the number of

influencers cannot grow with the population size, leading the share of influencers to rapidly

diminish to zero as the population grows regardless of parameters. In contrast, our findings

indicate that (i) although influencers may be small in proportion, their absolute number can

5Indeed, a set of normative questions from platform providers’ point of view and regulators alike can be
asked and examined based on our model. However, as a first step, we focus on the set of positive questions in
this paper and leave the many interesting normative questions for future research.
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increase steadily as the user pool expands, and (ii) the proportion of influencers is likely to vary

across platforms and domains in reality, as the marginal benefits from content consumption

vary.

Third, we examine how payoffs relate to positions in the network hierarchy. If the

marginal benefit of content consumption is small, then payoffs are increasing in positions

in the influencer hierarchy: higher-level influencers obtain more than the lower-level ones,

and all influencers earn more than pure consumers (Proposition 4). However, if the marginal

benefit of content consumption is sufficiently large relative to the marginal benefit of content

production, then this pattern is reversed: pure consumers obtain more benefits than influencers,

and influencers at lower levels earn more than those at higher levels (Proposition 5).

Last, we consider two extensions to check the robustness of our results. One extension

allows for heterogeneous preferences for content categories, akin to education versus gaming

channels on YouTube. There we show that each of the following structures can arise in

equilibrium: a single nested upward-linking network with some marginal players left out and

not served; or a clustering of separated communities, each of which is an independent nested

upward-linking network; or, a clustering of nested upward-linking networks with overlapping

follower bases. In all cases, nested upward-linking networks serve as the basic building blocks.

Moreover, despite the preference heterogeneity, a single nested upward-linking network that

connects all players can emerge in equilibrium for large populations (Proposition 6).

The other extension endogenizes the complementarity between influence and content

provision by explicitly allowing players to offer and demand monetary transfers to form links.

In this extension, a nested upward-linking network with a positive mass of influencers can

arise for each sufficiently large population (Proposition 7), confirming our main results.

Related literature This study develops a model to examine the formation and characteristics

of user-generated content networks. The model captures three distinct aspects of the markets

for user-generated content in reality: low entry barriers, non-rivalry of content sharing, and the

complementarity between influence and content provision. In addition, we consider directed

networks to allow for non-reciprocal relationships.

The most closely related work to ours is Galeotti & Goyal (2010), which also captures

low entry barriers and non-rivalry of content sharing.6 However, their model ignores the

complementarity between influence and content provision. In their model, content is not

provided for sharing with others or attracting followers, but to satisfy personal needs. As a

6Kinateder & Merlino (2017) extend Galeotti & Goyal (2010)’s model to allow for heterogeneous players.
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result, free-riding arises: rather than encouraging influencers to provide better content, having

more connections may even discourage content contribution. This leads to their result that

the number of influencer is limited independent of the population size, and their proportion

diminishes quickly to zero. Furthermore, in their model, every strict equilibrium network is a

two-tier, core-periphery network, unless indirect information flow is introduced. In contrast,

we show that the complementarity between influence and content provision (i) leads to to a

multi-level, nested upward-linking network and (ii) causes influencers to grow systematically

with the population.

Our model endogenizes both network links and content provision actions. Besides Galeotti

& Goyal (2010), studies that share this feature include Cabrales et al. (2011), König et al.

(2014), Baetz (2015), Hiller (2017), Belhaj et al. (2016), Kinateder & Merlino (2017), Ding

(2022), Li (2023) and the recent study by Sadler & Golub (2022).7 However, all these studies,

as well as Galeotti & Goyal (2010), restrict to undirected networks, assuming reciprocal

bilateral relationships from setup. Thus, they provide no explanation to the low reciprocity

in many online sharing networks (Wu et al., 2011, Kim et al., 2017). In a different context,

Herskovic & Ramos (2020) consider the formation of information acquisition networks in

a beauty contest setting under incomplete information. They identify a similar hierarchical

structure similar to our nested upward-linking networks, but differ from ours in that players

can sometimes follow one in a lower tier in equilibrium.8

Several recent studies (König et al., 2014; Belhaj et al., 2016; Hiller, 2017; Li, 2023; Sun

et al., 2023) show that network formation or optimization processes under complementarities

result in nested split graphs, which can also be interpreted as multi-level hierarchies. However,

in the environments considered by these studies, the incentives to take higher actions and

to form links toward others are complements. Consequently, even if players are allowed to

differentiate between their inward and outward links, the more central players would end up

having more inward links and more outward links (Li, 2023). This differs from the results of

the current paper, where players endogenously sort into influencers, who possess many inward

links but few outward links, and pure consumers, who have many outward links but no inward

links.
7There is another, less related strand of literature examining stochastically stable equilibrium (Young, 1993;

Kandori et al., 1993) in learning processes where agents revise both actions and connections over time in a
coordination game with binary actions. Contributors in this literature include Jackson & Watts (2002), Goyal
& Vega-Redondo (2005), Staudigl & Weidenholzer (2014), and Cui & Weidenholzer (2021), among others.
The primary question in this context is the conditions under which the payoff-dominant equilibrium or the risk
dominant equilibrium would be selected in the long run.

8See Herskovic & Ramos (2020, page 2148) , Figure 4, for examples.
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More broadly, this study contributes to the burgeoning research on the influencer economy

and social media platforms in the digital age. On this subject, Iyer & Katona (2016) study

influencers’ entry decisions in social communication markets and how they compete for

receivers’ attention in an exogenous network. Pagan et al. (2021) introduce a dynamic network

formation model in which agents form new links over time based on the principle that agents

producing higher levels of content are more likely to be linked. They provide empirical

evidence for the complementarity between influence and content provision. However, they

assume that each provider’s content provision level is exogenously endowed. Cong & Li

(2023) examine the industrial organization of influencer economy without considering network

structure.

Our paper proceeds as follows. Section 2 introduces the model with homogeneous players.

Section 3 derives that each strict equilibrium network is a nested upward-linking network and

examines the upper and lower bounds on the proportion of influencers. Section 4 examines

the two extensions. Section 5 concludes. Appendix A contains all proofs of the formal results

presented in the main text. The Online Appendix considers the situation where the marginal

benefit from content consumption is particularly large.

2 Model

The game Similar to Galeotti & Goyal (2010), our model is a simultaneous-move game

among n ≥ 3 players. The set of players is denoted by N = {1, ...,n}. Each i ∈ N makes two

dimensions of choices. The first is the level of content to provide, denoted by xi ≥ 0, for

each i ∈ N. If i does not provide any content, then xi = 0. The second choice is the set of

players to follow, denoted by gi j ∈ {0,1}, where gi j = 1 if i follows j and gi j = 0 otherwise.

By “following,” we mean a player actually spending time and attention to consume another

player’s provided content, thereby incurring costs. We write gi = (gi j) j∈N , with gii = 0 for

convention. Then the n-by-n matrix g = [gi j]i, j∈N represents the following network. The level

of content represents the content’s subjective quality based on the crowd’s revealed preferences.

Other things equal, players prefer following those providing a higher level of content.

A strategy for player i ∈ N is a pair si = (xi,gi), and the strategy profile s = (x,g) collects

all players’ strategies, with x = (x1, . . . ,xn) and g = (g1, . . . ,gn). The set S contains all

strategy profiles. Let Nin
i = { j ∈ N|g ji = 1} denote the set of players who follow i, and

Nout
i = { j ∈ N|gi j = 1} denote the set of players that i follows. Let din

i = |Nin
i | denote the

number of i’s followers, and dout
i = |Nout

i | be the number of players that i follows. They are

7



also called i’s indegree and outdegree in the network.

Let C(·) be an increasing and strictly convex cost function. Given all players’ strategies,

the payoffs for i ∈ N are given by the utility function

ui (x,g) = α ∑
j∈Nout

i

x j +βdin
i xi −C

(
xi +dout

i

)
, (1)

where α > 0 and β > 0 are exogenous parameters. The first term α ∑ j∈Nout
i

x j reflects the

benefits accrued from following other players (by consuming their content). The second term

βdin
i xi quantifies the benefits of being followed, derived from, for example, transfers offered

by i’s followers, which are increasing with content provision level xi.9

Hence, α and β are the marginal returns to following others and being followed, re-

spectively. The third term in the utility function encapsulates the total costs incurred from

participating in the network. These costs include those for content production and content

consumption. For instance, we can think of y = xi +dout
i as representing the aggregate time

and resources player i commits to the production and consumption of content on the platform,

and C(y) the opportunity costs of these resources.10

Following the literature, and to derive explicit bounds on the proportion of influencers, we

assume a quadratic cost function:

C
(

xi +dout
i

)
=

1
2

(
xi +dout

i

)2
.

This leads to a linear-quadratic utility function, which is commonly used in the network game

literature (e.g., Chen et al., 2018; Belhaj et al., 2016; Zhou & Chen, 2015; König et al., 2014;

Calvó-Armengol et al., 2009; Ballester et al., 2006). Adopting this linear-quadratic form is

primarily for clarity in exposition; our main qualitative results do not depend on this specific

functional form but hold for any increasing and strictly convex cost functions.11

For a given strategy profile (x,g), a provider is one with xi > 0, and an influencer is one

with followers. In any equilibrium, a player will be a provider if and only if she has followers.

Hence, the terms “provider” and “influencer” are often used interchangeably. A provider may

also follow other players. Those players who neither provide content nor have followers are

referred to as pure consumers.
9We endogenize these benefits by explicitly modeling monetary transfers between players in Section 4.2.

10While it is possible to introduce additional parameters into the cost function, such as C(cxi + kdout
i ), to

differentiate the relative costs of producing public goods and following other players, these parameters c and k
are redundant given the existence of α and β which already signify the relative benefits of these activities.

11Our Proposition 1 is proved directly for a general increasing and strictly convex cost function.
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Solution A (Nash) equilibrium is a strategy profile s = (x,g) ∈ S such that for each player

i ∈ N, the strategy si = (xi,gi) maximizes ui (si,s−i) given the strategies s−i of other players.

If each player’s strategy uniquely maximizes their payoffs, then s is a strict equilibrium.

The network g is an equilibrium network if there is x ∈ Rn
+ such that s = (x,g) is an

equilibrium, and it is a strict equilibrium network if (x,g) is a strict equilibrium.

A payoff-dominant equilibrium s = (x,g) ∈ S is one such that there is no equilibrium s′

with ui(s′) ≥ ui(s) for each i ∈ N while ui(s′) > ui(s) for some i ∈ N. If s is both a strict

equilibrium and a payoff-dominant equilibrium, then it is a payoff-dominant strict equilibrium.

2.1 Discussion

We discuss several features of the model in the following. First, our model exhibits substi-

tutability between content production and content consumption, captured by the strictly convex

cost function C(xi +dout
i ) = 1

2(xi +dout
i )2. This implies that as content provision xi increases,

the marginal cost of following an additional player also increases; conversely, if outdegree

dout
i increases, then the marginal cost of content provision rises. Hence, there is a trade-off

between content production and consumption, which hints on an endogenous division of

content providers and consumers. This trade-off is also present in Galeotti & Goyal (2010)

and is key to their core-periphery result.12

Second, similar to Galeotti & Goyal (2010), our model assumes (i) free entry for content

providers and (ii) non-rivalry in content provision: once provided, there is no additional cost

to serve more users. The first feature is captured by that all players are ex ante equal and have

the choice to become content providers. Both (i) and (ii) are prominent features of empirical

social media networks (Mohan, 2022; Burgess & Green, 2018; Cunningham et al., 2016; Iyer

& Katona, 2016).

Third, however, our model diverges from Galeotti & Goyal (2010) in two key respects,

allowing us to better capture certain distinct features of online social media networks. One

such feature is the significant economic (Bojkov, 2023; Duffy, 2020; Brown & Freeman, 2022)

and psychological (Marwick, 2015; Lampel & Bhalla, 2007; Toubia & Stephen, 2013) benefits

associated with prominent influencer status. These benefits incentivize influencers to provide

higher content level, thereby increasing their attractiveness. This complementarity is missing

in Galeotti & Goyal (2010) but captured by our model in the following way. Holding other
12In Galeotti & Goyal (2010), the cost term in players’ utility functions is linear in content provision xi and

outdegree. This difference between their model and ours is superficial, because they have a strictly concave
function encompassing the direct benefits of providing xi and the benefits of accessing others’ content, which
implies a similar substitutability between content production and consumption as in our model.
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terms constant, let ui(xi,din
i ) denote player i’s payoffs given her content provision decision xi

and indegree din
i . Then we have

∂ 2ui(xi,din
i )

∂xi∂din
i

= β > 0,

so that if a player has more followers, then she has incentives to provide higher content level.

In Section 4.2, we endogenize this complementarity by explicitly modeling the bargaining and

monetary transfers between followers and content providers (with the cost of considerable

loss of tractability).

Another distinctive feature of online social media networks is that following and content

consumption relationships are often non-reciprocal. For instance, most following relationships

on Twitter are non-reciprocal, and the most-followed users usually do not follow many others

(Wu et al., 2011). Similarly, influencers on Instagram are unlikely to follow many others,

whereas general users on average have a large number of followees (Kim et al., 2017). Such

low reciprocity in online social media networks contrasts sharply with traditional social

networks or trading relationships that comprise primarily of reciprocal links. Our model

captures the possibility of this low reciprocity by considering the formation of directed content

consumption networks: player i choosing to consume player j’s content does not imply that j

will necessarily follow back and consume i’s content – that is a choice of j. Unlike our model,

Galeotti & Goyal (2010) restrict to the formation of undirected networks: if i sponsors a link

to j, then automatically a mutual exchange relationship is established between them.13

Finally, we focus on characterizing strict equilibria in this paper. Imposing strictness

to refine the set of Nash equilibria is common in the literature of noncooperative network

formation models (e.g., Kinateder & Merlino, 2017; Baetz, 2015; Galeotti & Goyal, 2010;

Bala & Goyal, 2000). One reason is that the set of Nash equilibria in these games often admit

too many possibilities, while imposing the simple condition of strictness can sometimes yield

much sharper predictions. Another reason is that if a decentralized network system involves

individuals who are indifferent among multiple actions, and slight individual change from

the status qua would propagate to and eventually change the entire network dramatically,

then this network is unlikely to be stable. Indeed, a network is in a steady state of a best-

response dynamic or is robust to small heterogeneity or perturbations if and only if it is a strict

equilibrium (Kinateder & Merlino, 2017; Baetz, 2015; Bala & Goyal, 2000). When discussing

13We agree that this restriction may not be much loss of generality for traditional offline word-of-mouth
information exchange networks that are the focus of Galeotti & Goyal (2010).
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the plausible range of influencers, we further apply the criterion of payoff dominance.

3 Analysis

3.1 Equilibrium: nested upward-linking networks

If a provider is not followed by anyone, then she has no incentive to provide content, which in

turn explains why she has no followers. Therefore, an empty strict equilibrium network always

exists, in which no player provides content and no one follows other players. This differs from

Galeotti & Goyal (2010), where the purpose of providing content (i.e., acquiring information

in their context) is to satisfy private needs rather than to derive benefits from others. In our

model, we first show that if the population is large enough, then a non-empty strict equilibrium

network must exist, such that some players provide content and are followed by others. We

then show that all strict equilibrium networks are nested upward-linking networks, possibly

with multiple tiers of influencers.

Definition 1. A network g in a strategy profile (x,g) is a nested upward-linking network if it is

1. nested: for each i, j ∈ N, i ̸= j, we have Nout
i \{ j} ⊂ Nout

j or Nout
j \{i} ⊂ Nout

i ; and

2. upward-linking: xi < x j implies gi j = 1 and g ji = 0.

In a nested upward-linking network, players are partitioned into t̄ ≥ 1 tiers, N1, ...,Nt̄ ⊂ N,

according to their content provision level. All players with the same xi are in the same tier.

Players with a higher xi are placed in a higher tier. The upward-linking is in a strong sense:

while all players follow all of those in a higher tier, no player follows a single player in a

lower tier. In particular, players in tier 1 are pure consumers who follow all players in all tiers

t ≥ 2. Players in the same tier may or may not follow each other. The class of core-periphery

networks is a special case of nested upward-linking networks; they are nested upward-linking

networks with t̄ = 2 and that players in the second tier, the core players, follow each other

(Galeotti & Goyal, 2010). Further, a periphery-sponsored star is a core-periphery network

with a single player in the second tier.

Here is our first main result:

Proposition 1. 1. A non-empty strict equilibrium network exists if and only if 2αβ > 1
n−1 .

2. Every strict equilibrium network g is a nested upward-linking network. Furthermore,

each strict equilibrium s = (x,g) exhibits reciprocal links at the top: if xi = x j and gi j = 1,

then gkℓ = 1 for each k ∈ N and ℓ ∈ N with k ̸= ℓ and xℓ = xk ≥ xi.

11
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Figure 2: Examples of nested upward-linking networks.

The proposition states that, first, a non-empty strict equilibrium network exists if and

only if 2αβ > 1
n−1 . The condition implies that given α > 0 and β > 0, a non-empty strict

equilibrium network must exist for a sufficiently large population. This existence condition is

obtained by considering a periphery-sponsored star where there is a single provider i followed

by all the rest. Given a fixed n, the periphery-sponsored star maximizes the provider’s the

number of followers and motivates her to provide the highest content provision level possible.

Due to the complementarity between influence and content provision, the provider’s content

level is increasing in n as the number of followers increases, which in turn makes it easier for

the rest to follow the provider.

Second, every strict equilibrium network is a nested upward-linking network. Figure 2

provides four examples. Networks (a) and (b) are nested upward-linking networks with two

content provision levels, whereas (c) and (d) have three provision levels. In all cases, players

at tier 1, the bottom tier, are pure consumers who do not provide content but follow all others

in the above tiers. Players in higher tiers are providers with xi > 0 and are influencers with

followers. Networks (a) and (b) contain a single tier of influencers who provide the same level

12



of content and have the same number of followers. In contrast, networks (c) and (d) contain

two tiers of influencers, who provide different levels of content and have different numbers of

followers. Among the examples, only (b) is a strictly defined core-periphery network (Galeotti

& Goyal, 2010).

Furthermore, the contrast between (a) and (b), and that between (c) and (d), in Figure 2

illustrates that influencers within a tier may or may not follow each other. However, Proposition

1 imposes a restriction on the reciprocal relationships: that influencers follow each other within

a tier can only occur in the upper part of the network. This result explains why on Instagram

influencers with many common followers are found to frequently follow each other, while the

whole network exhibits low reciprocity (Kim et al., 2017).

In what follows, we explain how combining (i) the complementarity between influence

status and content provision and (ii) the substitutability between content provision and content

consumption leads to the multi-level, nested upward-linking structure.

First, to decide whom to follow and the optimal number of followees dout
i , each player

ranks the providers according to their content provision level and choose providers from high

to low down the list. This selection principle, combined with the substitutability between

content production and consumption, implies that players with a higher content provision level

follow fewer providers, and players’ followee sets Nout
i are nested.

Lemma 1. In every strict equilibrium, if xi ≥ x j, then dout
i ≤ dout

j and Nout
i \{ j} ⊂ Nout

j .

The reason is the following. When a player follows an additional provider, she obtains

the additional benefit of consuming that additional provider’s content, but also bears the

additional cost of spending time and attention for the consumption. As a player follows

more providers down the ranking list, the additional benefit of following one more provider

decreases, while the marginal cost of linking increases. The optimal number of followees dout
i

is then determined by the point where the marginal benefit crosses the marginal cost. Given the

convexity of the cost function, as a player’s content provision xi increases, the marginal cost

of following an additional player increases. As a result, a player’s outdegree dout
i is decreasing

in her content provision xi. Moreover, the followee set Nout
i includes precisely the top dout

i

providers among the provider ranking list. Since all players agree on the same ranking of

providers, their followee sets Nout
i must be nested.

Second, due to the complementarity between xi and din
i , players with more followers

provide higher levels of content. Furthermore, the selection of providers from high to low

implies that the converse is also true: higher-ranked providers must attract more followers.

Consequently, a player has more followers if and only if she provides a higher level of content.
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Lemma 2. In every strict equilibrium, xi ≥ x j if and only if din
i ≥ din

j .

Thus, the complementarity between influence status and content provision leads to the

emergence of providers at various levels. Top influencers, with the greatest number of

followers, are incentivized to offer the highest level of content, which justifies the massive

number of followers. Mid-tier influencers, having fewer but still many followers, provide a

moderate level of content. Low-tier influencers provide a lower level of content to support and

attract a relatively small number of followers, although it can still be a considerable number in

a large network.

Therefore, Lemmas 1 and 2 together imply a nested hierarchy of influencers atop a base

group of pure consumers. What remains to show is the strong upward-linking property for

all strict equilibria: each player i must follow all those with x j > xi and never follow a single

player with x j < xi. This outcome does not follow immediately from the two lemmas. To

explain this outcome, index players by x1 ≤ . . . ≤ xn, and suppose there are some players i

and j such that j follows i while xi < x j. Consider the highest-indexed player j among those

ever following a lower-indexed player i with xi < x j. Then we can show that Lemmas 1 and 2

imply a contradiction. The intuition is that, on the one hand, if j follows i, then by Lemma 1,

so must all the players 1,2, . . . , j−1, except i herself. Therefore, player i must have at least

j− 1 followers. On the other hand, however, player j is already the highest ranked player

among those ever following a lower ranked player. Therefore, no player k > j follows j. Thus,

player j’s indegree is at most j− 1. Thus, din
j ≤ j− 1 ≤ din

i . But then, by Lemma 2, this

implies xi ≥ x j; thus, a contradiction is established. This shows that the effects represented

by Lemmas 1 and 2 would accumulate and eventually lead to a strong restriction on strict

equilibrium networks.

3.2 Proportion of influencers

Next, we examine whether influencers can consistently grow alongside the population or if

their proportion inevitably declines. This question is related to the degree of concentration of

influence within larger populations and has implications for the distribution of benefits from

social media and the spread and containment of (mis-)information in a broader context.14

For a strategy profile s = (x,g), we denote by ρ(s) = 1
n |{i ∈ N|xi > 0}| the proportion of

influencers, which is equivalent to 1
n |{i ∈ N|din

i > 0}| in any strict equilibrium.15 We quantify

14See discussions in Golub & Jackson (2010a,b); Yanagizawa-Drott (2014); Muller & Peres (2019); Becker
et al. (2017); Bakshy et al. (2011); Jackson et al. (2016).

15Proposition 3 remains valid if alternatively we define influencers as those with content provision levels higher

14



the plausible range of ρ(s) by driving an upper bound of ρ(s) over all strict equilibria and a

lower bound of it over all payoff-dominant strict equilibria. We are interested in the proportion

of influencers relative to pure consumers because this, as we show in the next subsection,

affects inequality among players via their network positions.

First, observe that holding n fixed, if the marginal benefit of content consumption, α ,

and that of accumulating followers, β , are large enough, then there exists a complete strict

equilibrium network such that all players follow each another and all of them provide content

at the same sufficiently high level to support the followers. In such a network, ρ(s) = 1. In the

Appendix, we show that if α > 1 and β is sufficiently large, then ρ(s) = 1 is attainable for

each n ≥ 3. Here, we focus on the more interesting case of α ≤ 1.16

Proposition 2. If α ≤ 1, then ρ(s)< ρH ≡ αβ

αβ+1 +
1

(αβ+1)n for each strict equilibrium s ∈ S.

Proposition 2 states that if α ≤ 1, then the proportion of influencers is smaller than ρH ,

which is strictly below one. Note that although the bound decreases with n, it does not diminish

to zero. Instead, the limit

lim
n→∞

ρ
H =

αβ

αβ +1

is continuous and increasing in αβ , and can take any value from zero to one as αβ increases

from indefinitely small to infinity.

Second, as noted before, an empty strict equilibrium network always exists. Thus, there

is a trivial lower limit of ρ(s) over all strict equilibria, which is zero. However, whenever

a non-empty strict equilibrium network exists, the empty network can only arise from a

coordination failure. This is because there is an alternative non-empty network, such as a

periphery-sponsored star, in which everyone can be strictly better off. Thus, at least in the

context of social media networks, strategy profiles that fail to be a payoff-dominant equilibrium

due to insufficient activity levels like the empty network might be unstable.17 Therefore, we

instead provide a lower bound of ρ(s) over the set of payoff-dominant strict equilibria, to

show that the complementarity between influence and content provision may drive influencers

than a given threshold which can be even increasing in n. For instance, consider the alternative definition of
influencers as those with xi > bn for a given constant b > 0. We provide the proof for Proposition 3 in Appendix
A for this alternative, more stringent, criterion of influencers.

16An immediate consequence of α ≤ 1 is that players would not follow another with the same xi; see Lemma
4 for details. This result combined with Proposition 1 implies that there are no reciprocal links.

17In real-world social media networks, the users who aspire to become influencers, anticipating the future
benefits, would initiate content provision before they have accumulated a large number of followers. And to
survive and earn profit, platform providers would take various measures to activate and promote connection
and content provision activities. Indeed, it is commonly observed that the platform providers frequently use
intelligent algorithms to strategically push appealing content to individual users.
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to grow systematically with the population. As Proposition 2, we focus on the case of α ≤ 1.

Results for α > 1, which are similar but with additional details to consider, are discussed in

our Online Appendix.

Proposition 3. If α ≤ 1 and β > 1−α

α2 , then there exists n∗ ≥ 3 such that, for each n ≥ n∗, we

have

ρ(s)≥ ρ
L ≡ α2β 2 +αβ −β

α2β 2 +α2β +2αβ +α

for each payoff-dominant strict equilibrium s ∈ S.

The existence of the lower bound ρL > 0 immediately implies that for each large enough

n, there is a strict equilibrium in which the proportion of influencers is at least ρL rather than

diminishing in the limit. Furthermore, based on payoff-dominant strict equilibria, influencers

not only can increase, but they must increase, without bound as the population grows. This

finding is in stark contrast to Galeotti & Goyal (2010)’s result of "the law of the few." In their

model, the absolute number of influencers is bounded above independent of population size;

thus, the proportion of influencers rapidly diminishes to zero as the population grows. While

their result provides a succinct explanation for the relatively small number of influencers

observed in many empirical networks, we fail to find any evidence in the context of social

media networks suggesting that the number of influencers is fixed and cannot grow with the

population. By contrast, statistics indicate that influencers have increased significantly over the

past few years as the number of users grows on platforms such as YouTube and Bilibili (Scorus,

2021; Funk, 2020). More importantly, we consider Galeotti & Goyal (2010) inadequate in

understanding online social media networks due to its neglect of the complementarity between

influence and content provision. This complementarity, as we explain immediately, drives

influencers to increase systematically with the population.

The intuition behind Proposition 3 is the following: the complementarity between din
i

and xi allows all providers’ content provision xi to increase as the population grows, which

enables all pure consumers to follow more providers. This leads to the expansion of providers,

increasing the activity levels of all players and making everyone better off. Thus, as the

population grows, influencers must also increase among the payoff-dominant equilibria.

More precisely, due to the complementarity, a provider’s content level

xi = βdin
i −dout

i

increases with indegree din
i . Consider a sequence of strict equilibrium networks with a fixed

number of providers, k, and a growing number of population size, n. Then the number of
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pure consumers, n− k, also increases. By Proposition 1, all providers are followed by all pure

consumers, leading to an increase in content provision. It follows that, from a sufficiently

large n∗ onward, there is room to move up a fraction of players, say, ρL(n−n∗− k) players,

among the increased pure consumers to be a new set of providers followed by the remaining

pure consumers. The new providers continue to follow all providers they initially followed. In

this way, the number of providers is increased to k+ρL(n−n∗− k) in the modified network.

Moreover, if β is large enough, then the modified profile remains a strict equilibrium. This

is because as all providers’ content provision increases, the marginal benefits of following

more providers increase. Thus, the remaining pure consumers are happy with following more

providers, and the new set of providers are happy with providing content while maintaining

their links to the old providers. As n grows, the fraction of providers in the modified networks

approaches limn→∞
1
n(k+ρL(n−n∗− k)) = ρL.18

Further, all players are better off, and some strictly so, in the modified network. Consider

them one by one: (i) the remaining pure consumers in the modified network; (ii) the players

who are providers in both networks, i.e., the old providers; and (iii) the new providers. The

first group’s revealed preferences for following more providers, combined with strictly convex

linking costs, suggest that they must be strictly better off. The old providers’ indegree,

outdegree, and content provision levels are unchanged. Thus, they are at least as well off.

Finally, the new providers could have chosen to provide zero content while enjoying the

additional benefits of being followed by the remaining pure consumers, but choose to provide

positive content, revealing that they must be strictly better off. Note that if β = 0, i.e., there is

no complementarity between influence and content provision, then the above outcome would

not occur even with private motivations for providing content (e.g., acquiring information

for personal use), because in that case content provision would not be increase with more

followers.

3.3 Payoffs and network positions

It may be conjectured that payoffs increase with one’s position in the influencer hierarchy:

influencers in higher tiers receive greater payoffs than those in lower tiers, and even the

lowest-tier influencers earn more than pure consumers. This is not always true; the opposite

can occur.
18That is, for each n > n∗ and the initial strict equilibrium considered given n, we obtain a modified network

with k+ρL(n−n∗− k) providers. The limit fraction of providers for the sequence of the modified networks is
ρL.
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Consider strict equilibrium networks with t̄ ≥ 2 tiers. The set of players in tier t ∈ {1, . . . , t̄}
is denoted by Nt ⊂ N, and let nt = |Nt | denote the number of players in tier t. Also, let

n̄t = ∑
t
t ′=1 nt ′ the total number of players up to tier t. According to Proposition 1, players in

the same tier are completely symmetric; their indegree, outdegree, and content provision are

all the same. Thus, their payoffs are the same. Given a strict equilibrium s = (x,g), let u[t]
denote the payoff number of players in tier t, i.e., ui(s) = u[t] for each i ∈ Nt .

First, we present the condition under which payoffs increase with one’s position in the

hierarchy.

Proposition 4. Consider a strict equilibrium with t̄ ≥ 2. If α < 1, then u[t] > u[t−1] for each

t ∈ {2, . . . , t̄}.

Proposition 4 shows that given α < 1, the individual payoff is strictly increasing with tier

level. This is because α < 1 implies that the marginal benefit from content consumption, α , is

small relative to the marginal benefit from being followed, β . Therefore, a tier-t player who,

in equilibrium, has more followers than a player in tier t −1, can earn greater payoffs than the

latter. However, the following proposition implies that if α ≥ 1, then the monotonicity may

not hold, and the higher-the-better-off outcome may even be reversed.

Proposition 5. Consider a strict equilibrium network with t̄ ≥ 2. If α ≥ 1, then for each

t ∈ {2, . . . , t̄}, there exists a threshold α̂(β ,n,nt ,nt−1, n̄t−1) ∈ R such that u[t] ≤ u[t−1] if

α ≥ α̂(β ,n,nt ,nt−1, n̄t−1), and u[t] > u[t−1] otherwise.

Proposition 5 implies that the payoff of a player may be non-monotone in the tier level

when α ≥ 1. Specifically, whether players in a higher tier obtain more payoffs depends on

the marginal benefit parameters α and β . To illustrate this outcome, consider the periphery-

sponsored star where player 1 is the sole provider. In strict equilibrium, player 1’s provision is

x1 = β (n−1), and her payoff is

u[2] = β (n−1)x1 −
1
2

x2
1 =

1
2

x2
1.

In contrast, a pure consumer’s payoff is

u[1] = αx1 −
1
2
.

Compared with a pure consumer, the provider has more followers but no other providers to

follow. Thus, as revealed by the above payoff equations, we observe that a pure consumer’s
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payoffs increase with α , while the provider’s payoffs increase with the content provision level

x1 which is in turn increasing in β . Hence, if β is held constant and α is sufficiently large,

then a consumer’s payoff can surpass that of the provider. The intuition is simple. We are

comparing not the provider’s advantage from being followed with the consumers’ utility gains

from consumption but rather their net benefits. Although the provider benefits from having

more followers, they also put significant effort into content production. Consequently, if the

utility gains from consuming content are substantial, then consumers may earn greater net

benefits. This intuition extends to equilibrium networks with multiple tiers. Players in higher

tiers have more followers but fewer providers to follow, thereby benefiting more from content

production but less from content consumption. Consequently, if the enjoyment derived from

content consumption is sufficiently large, players in lower tiers may obtain more net benefits.

4 Extensions

4.1 Horizontal differentiation

This subsection examines an extension of the model with heterogeneous preferences over

content types, akin to YouTube channels on cooking versus gaming. The model is adapted

from Chen et al. (2018); Kor & Zhou (2023).

Suppose that there are two goods, A and B, and players have different preferences over

them. For example, A and B represent two categories of YouTube channels. Simultaneously,

each i ∈ N makes three choices: which good to provide, ωi ∈ {A,B}; the content provision

level, xi ≥ 0; and the subset of players to follow, Nout
i = { j ∈ N|gi j = 1}. Player i’s strategy

is si = (ωi,xi,gi), and the strategy profile for all players is (Ω,x,g), where Ω = (ω1, . . . ,ωn).

Given a profile (Ω,x,g), the utility for i ∈ N is

ui(Ω,x,g) = αθ
A
i

(
∑

j∈Nout
i ,ω j=A

x j

)
+αθ

B
i

(
∑

j∈Nout
i ,ω j=B

x j

)
+βdin

i xi −
1
2
(
xi +dout

i
)2
,

where θ A
i ≥ 0 and θ B

i ≥ 0 are individual preferences parameters for the two goods.

We further assume that players are of two types, such that the set of players N is partitioned

into two subsets of equal size, NA = {1, . . . , n
2} and NB = {n

2 +1, . . . ,n}, and that n ≥ 4 is an

even number. Consider a discount parameter δ ∈ (0,1). We assume θ A
i = 1 and θ B

i = 1−δ for

each i ∈ NA, and θ A
i = 1−δ and θ B

i = 1 for each i ∈ NB. Hence, other things equal, players in

NA prefer good A over good B, players in NB prefer good B over good A. In a strict equilibrium,
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each player plays a unique best-response strategy (ωi,xi,gi) given other players’ strategies.

First, we present an example to show that a richer and more realistic set of networks can

arise in this more complex environment. However, nested upward-linking networks remain

the basic building blocks to construct the equilibrium networks.

Example 1. Suppose n = 8. Then networks (a) and (b) displayed in Figure 3 are strict

equilibrium networks when αβ > 1
6 and 0 < 1− δ < min{ 1

6αβ
, 1

α
}. Network (c) is a strict

equilibrium network when αβ > 1
2 , β > 1

2 , and 1
4αβ

< 1−δ < min{ 1
2αβ

, 1
2α

}.

Network (a) consists of a single nested upward-linking network that covers only part of the

population. Player 1, followed by all players in NA except herself, provides x = 3β of good A,

while all players in NB are isolated and have no content of their type to consume. Network

(b) contains two separated communities, each of which is a nested upward-linking network.

Network (c) consists of two nested upward-linking networks with overlapping followers.

Player 1, followed by only players in NA, is a local influencer. In contrast, player 8 is a global

influencer who provides a higher level of content and is followed by players in NA as well as

players in NB.

Next, we show that despite the preference heterogeneity, if n is large enough, then a nested

upward-linking network that connects all players can always be a strict equilibrium network.

In such a network, every player participates as a provider or a consumer, and all consumers in

the same tier follow the same set of providers, despite their heterogeneous preferences over

content categories.

Proposition 6. If 2αβ (1−δ )> 1
n−1 , then there exists a strict equilibrium (Ω,x,g) such that

g is a nested upward-linking network without isolated agents.

Proposition 6 provides a sufficient condition for a nested upward-linking network that

connects all players to be a strict equilibrium network. It implies that given α > 0, β > 0

and δ > 0, an integrated market can always arise if the user pool is large, which aligns with

Proposition 1. However, the discount parameter δ also plays a role here. If δ is sufficiently

close to one, i.e., players’ tastes are sufficiently polarized, then an integrated market may not

exist, because players would not want to follow providers who provide a different category of

content.

4.2 Monetary transfers

So far, players directly gain utility from having followers. Now, we consider an extension

where players explicitly propose monetary offers or demands to each other to form a network.

20



1

42 75

Provider of good A

3 6

Players who prefer good A Players who prefer good B

8

(a)

1

42 75

Provider of good A

3 6

Players who prefer good A Players who prefer good B

8

Provider of good B

(b)

1

42 75

Local provider of good A

3 6

Players who prefer good A Players who prefer good B

8

Global provider of good B

(c)

Figure 3: Networks that can emerge under heterogeneous preferences over content categories.
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We show that a nested upward-linking structure and a positive mass of influencers can still

arise.

This network formation model with transfers is a combination and adaptation of Galeotti

& Goyal (2010) and Bloch & Jackson (2007).19 There are two stages. In stage 1, each i ∈ N

chooses the public goods provision, xi ≥ 0. In stage 2, each i ∈ N observes x = (x1, . . . ,xn)

and proposes a vector of transfers τi = (τi j) j∈N, j ̸=i ∈ Rn−1. The proposal τi j can be positive

or negative. When τi j ≥ 0, player i offers transfers to j. When τi j < 0, player i demands

transfers from j. A directed link from i to j is formed if and only if τi j + τ ji ≥ η and τi j ≥ η ,

where η > 0 is the transaction cost and can be arbitrarily small. This transaction cost may

represent, for example, service and digital facility prices charged by the platform provider.

In particular, if and only if τi j ≥ η and τ ji ≥ η , then gi j = g ji = 1. Let τ = (τ1, . . . ,τn) be

the transfer profile of all players and T be the set of all transfer profiles. Let g(τ) denote the

network induced by τ ∈ T, with gii(τ) = 0 for each i ∈ N. Let ḡi j(τ) = max{gi j(τ),g ji(τ)}.

Let dout
i be i’s outdegree in g(τ). The game ends after Stage 2 and each i ∈ N receives

ui(x,τ) = α ∑
j∈N

gi j(τ)x j −C
(
xi +dout

i
)
− ∑

j∈N
ḡi j(τ)τi j.

In this two-stage game, each x ∈ Rn
+ induces a different subgame in stage 2.20 A strategy

for player i is a pair (xi, τ̂i), where τ̂i(x) ∈ Rn−1 specifies i’s transfers in stage 2 given

x = (x1, . . . ,xn), for each x ∈ Rn
+.21 Let τ̂ = (τ̂1, . . . , τ̂n). Let (x, τ̂) be the strategy profile of

all players and S be the set of all strategy profiles.

Definition 2. Given a provision profile x ∈Rn
+, a transfer profile τ ∈ T is pairwise stable if for

each i ̸= j, there are no τ ′i ,τ
′
j ∈ Rn−1 such that ui(x,τ−i j,τ

′
i ,τ

′
j)≥ ui(x,τ), u j(x,τ−i j,τ

′
i ,τ

′
j)≥

u j(x,τ), and one of the inequalities is strict.

A strategy profile (x, τ̂) ∈ S is a pairwise stable SPE (subgame perfect equilibrium) if (i)

(x, τ̂) is a subgame perfect equilibrium, and (ii) τ̂(x) is pairwise stable for each x ∈ Rn
+.

For each xi ≥ 0 and outdegree d ≥ 1, denote by ∆C(xi,d) =C(xi +d)−C(xi +d −1) the

increase in costs of following one more player. Then for each provision profile x ∈ Rn
+, we

19Galeotti & Goyal (2010) assume a fixed linking cost and that it is shared equally between the linked players.
Bloch & Jackson (2007)’s model has no content provision.

20We use Rn
+ to denote the set of nonnegative n-tuples.

21This two-stage game is equivalent to a one-stage game in which each player simultaneously announces the
public goods provision xi and proposes a set of contingent contracts about transfers τi(x) ∈ Rn−1 that depend on
the profile x = (x1, . . . ,xn).
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can construct a class of networks G∗(x) that feature nestedness and upward-linking, where

each g∗ ∈ G∗(x) is obtained by the following procedure:

Step 1: Reindex the players so that x1 ≥ x2 ≥ ·· · ≥ xn.

Step 2: Define a critical integer d∗
i for each i∈N as follows, which determines i’s outdegree.

If αxd ≥ ∆C(xi,d −1)+η for some d ∈ {1, . . . ,n} and d > i, then let d∗
i ∈ {1, . . . ,n} be the

largest number such that the inequality holds. If αxd < ∆C(xi,d−1)+η for all d ∈ {1, . . . ,n},

d > i, then let d∗
i be the largest number d ∈ {1, . . . ,n} with d < i such that αxd ≥ ∆C(xi,d)+η .

If αxd < ∆C(xi,d)+η for each d < i, then let d∗
i = 0.

Step 3: For each i, j ∈ N, i ̸= j, we set g∗i j = 1 if and only if j ≤ d∗
i , i.e., Nout

i = { j ∈
N| j ≤ d∗

i , j ̸= i}. Then, for players with i > d∗
i we have dout

i = d∗
i , and for those i < d∗

i we

have dout
i = d∗

i −1. This completes the procedure.

By the above procedure, we obtain at least one such g∗ for each x ∈ Rn
+. Since reindexing

players in Step 1 is not necessarily unique, the constructed g∗ admits multiple possibilities.

Thus, G∗(x) need not be singleton. Note that if xi > x j, then in each g∗ ∈ G∗(x) we have

din
i ≥ din

j , dout
i ≤ dout

j , Nout
i \{ j} ⊂ Nout

j , and Nin
j \{i} ⊂ Nin

i . Hence, all networks in G∗(x)

exhibit nestedness. Let S∗α,n ⊂ S denote the set of all pairwise stable SPEs given α and n.

Proposition 7. 1. For each x ∈ Rn
+ and g∗ ∈ G∗(x), there exists τ ∈ T such that g(τ) = g∗

and τ is pairwise stable and a Nash equilibrium in the stage 2 subgame.

2. Assume 0 < α ≤ 1. Then there exist n∗ ≥ 3 and a sequence of pairwise stable SPEs

(x, τ̂)n∗,(x, τ̂)n∗+1,(x, τ̂)n∗+2, . . . ,

with (x, τ̂)n ∈ S∗α,n for each n ≥ n∗, such that

i) g(τ̂(x)) is a nested upward-linking network, and

ii) limn→∞ ρn = 1−
√

1
1+α2 , where ρn is the proportion of influencers induced by (x, τ̂)n.

The proposition presents two findings. First, for any given provision profile x ∈ Rn
+, there

exists an equilibrium transfer profile τ ∈T in the second-stage subgame that leads to a network

characterized by nestedness and upward-linking. Second, there exists a sequence of pairwise

stable SPEs where as n → ∞, the proportion of influencers approaches a limit that is strictly

positive and increases with α ∈ (0,1]. This immediately implies that the upper limit of the

proportion of influencers over all pairwise stable SPEs must be strictly positive.
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5 Conclusion

The advancement of digital and virtual technologies has led to the continued rise of large-

scale user-generated content markets on online platforms, where an ever-growing range of

creation, information acquisition, and consumption activities occur. The emergence of these

markets poses novel, intriguing, and significant questions for researchers and regulators. These

questions include how influencers, the “vital few,” emerge from the decentralized decisions of

countless individual users; what network topologies to expect; and the welfare implications.

Our study contributes to the discourse on these issues in two ways. First, building on

the work of Galeotti & Goyal (2010), we develop a simple model that encapsulates the three

prominent features of online user-generated content markets: low entry barriers, non-rivalrous

content consumption, and the complementarity between influence and content provision.

Second, we use the model to demonstrate that (i) nestedness and upward linking are the

primary features of user-generated content networks; (ii) a multi-level hierarchy of influencers

can arise; (iii) while influencers may be small in proportion, they can increase indefinitely and

proportionally with the population; and (iv) while an increase in the user base tends to benefit

everyone, pure consumers can sometimes reap greater utility gains than influencers.

To conclude, our study elucidates the emergence of influencers and network structures in

online user-generated content markets, setting the stage for future research into their boarder

consequences and policy implications. For instance, we have not addressed the incentives

and policies of platform providers, who may choose particular compensation schemes for

content providers, and charge or subside participants based on their network positions. These

choices of platform providers are likely to impact the network structure and the distribution of

different levels of influencers, all of which warrant future research.
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Appendix A: Proofs

Notations. In the proofs, when the argument is applicable to the general cost function C(·) with

C′(y)> 0 and C′′(y)> 0, we use C(xi +dout
i ) = 1

2(xi +dout
i )2 to denote the cost function and D(·)≡

C′−1(·) denote the inverse of its first-order derivative. In addition, from the proofs of Proposition 2

onward, given a strict equilibrium s = (x,g) – which is a nested upward-linking network according

to Proposition 1, we use x[t],dout
[t] ,d

out
[t] , and u[t] to denote the content provision level xi, indegree din

i ,

outdegree dout
i , and payoffs ui for each player in tier t within the network g, respectively. This is

possible because, according to Proposition 1, all players in the same tier have the same xi, din
i , dout

i , and

ui in a strict equilibrium network.

Proof of Lemma 1

Consider a strict equilibrium. Without loss of generality, suppose that x1 ≥ x2 and dout
1 > dout

2 for

contradiction. First, suppose that Nout
1 \{2} ⊂ Nout

2 \{1} does not hold, so that there is some i ̸= 1,2

such that i ∈ Nout
1 and i /∈ Nout

2 . Then, holding all other things fixed, player 1’s utility of linking to i,

u1(g1i = 1), is strictly greater than the utility of deleting the link, u1(g1i = 0). We have u1(g1i = 1)>

u1(g1i = 0) if and only if αxi >C(dout
1 + 1

2)−C(dout
1 −1+ 1

2). But then, by the convexity of C(·) and

given dout
1 > dout

2 , we have

αxi >C(dout
1 +

1
2
)−C(dout

1 −1+
1
2
)

≥C(dout
2 +1+

1
2
)−C(dout

2 +1−1+
1
2
)

=C(dout
2 +1+

1
2
)−C(dout

2 +
1
2
).

It follows that u2(g2i = 1)> u2(g2i = 0). Therefore, player 2 has strict incentives to deviate to linking

to i, a contradiction. Hence, it cannot be both dout
1 > dout

2 and that i ∈ Nout
1 and i /∈ Nout

2 for some i ̸= 1,2.

Next, suppose dout
1 > dout

2 and Nout
1 \{2} ⊂ Nout

2 \{1}. Then, it must be dout
1 = dout

2 + 1, g12 = 1

and g21 = 0. That player 1 linking to player 2 implies u1(g12 = 1) > u1(g12 = 0), leading to αx2 >

C(x1 +dout
1 )−C(x1 +dout

1 −1). However, x1 ≥ x2. Hence, by Property the convexity of C(·),

αx1 ≥ αx2 >C(x1 +dout
1 )−C(x1 +dout

1 −1)

≥C(x2 +dout
1 )−C(x2 +dout

1 −1)

=C(x2 +dout
2 +1)−C(x2 +dout

2 ).

Therefore, player 2 strictly prefers to linking to player 1: u2(g21 = 1)> u2(g21 = 0), a contradiction

with g21 = 0. Therefore, x1 ≥ x2 implies both dout
1 ≤ dout

2 and Nout
1 \{2} ⊂ Nout

2 \{1}, establishing the
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lemma.

Proof of Lemma 2

Claim 1. In every strict equilibrium, if din
i ≥ din

j , then xi ≥ x j.

Suppose not, and that without loss of generality, din
1 ≥ din

2 and x1 < x2. Then, gi1 ≤ gi2 for each

i ̸= 1,2; otherwise, some player i ̸= 1,2 would have incentive to delete the link to player 1 and deviate

to linking with 2. Together with din
1 = ∑i̸=1,2 gi1 + g21 ≥ din

2 = ∑i ̸=1,2 gi2 + g12, we obtain g21 ≥ g12.

Holding all other things fixed, let ui(xi,Nout
i ,din

i ) denote the payoffs for i given her indegree and choices

on xi and Nout
i . We separate two cases.

Case 1: Suppose g21 = g12. If g21 = g12 = 1, then let N̄out
1 =Nout

1 \{2}∪{1} and N̄out
2 =Nout

2 \{1}∪
{2}. If g21 = g12 = 0, let N̄out

1 =Nout
1 and N̄out

2 =Nout
2 . Note |N̄out

1 |= |Nout
1 |= dout

1 and |N̄out
2 |= |Nout

2 |=
dout

2 . Then,

u2(x2,Nout
2 ,din

2 )−u2(x1, N̄out
1 ,din

2 ) = α

(
∑

i∈Nout
2 \Nout

1 ,i̸=1,2
xi

)
−α

(
∑

i∈Nout
1 \Nout

2 ,i ̸=1,2
xi

)
+β (x2 − x1)din

2 −C(x2 +dout
2 )+C(x1 +dout

1 ).

Since player 2 plays a unique best-response, u2(x2,Nout
2 ,din

2 )> u2(x1, N̄out
1 ,din

2 ). Hence, given (x2 −
x1)din

1 ≥ (x2 − x1)din
2 ,

u1(x2, N̄out
2 ,din

1 )−u1(x1,Nout
1 ,din

1 ) = α

(
∑

i∈Nout
2 \Nout

1 ,i̸=1,2
xi

)
−α

(
∑

i∈Nout
1 \Nout

2 ,i ̸=1,2
xi

)
+β (x2 − x1)din

1 −C(x2 +dout
2 )+C(x1 +dout

1 )

≥ u2(x2,Nout
2 ,din

2 )−u2(x1, N̄out
1 ,din

2 )

> 0.

However, this implies that player 1 has incentives to deviate to the strategy (x2, N̄out
2 ).

Case 2: Suppose g21 = 1 and g12 = 0. Let N̄out
2 = Nout

2 \{1}∪{2}. By

u2(x2,Nout
2 ,din

2 )−u2(x1,Nout
1 ,din

2 ) = α

(
∑

i∈Nout
2 \Nout

1 ,i̸=1,2
xi

)
−α

(
∑

i∈Nout
1 \Nout

2 ,i ̸=1,2
xi

)
+αx1 +β (x2 − x1)din

2 −C(x2 +dout
2 )+C(x1 +dout

1 )
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and

u1(x2, N̄out
2 ,din

1 )−u1(x1,Nout
1 ,din

1 ) = α

(
∑

i∈Nout
2 \Nout

1 ,i̸=1,2
xi

)
−α

(
∑

i∈Nout
1 \Nout

2 ,i ̸=1,2
xi

)
+αx2 +β (x2 − x1)din

1 −C(x2 +dout
2 )+C(x1 +dout

1 ),

we obtain [
u1(x2, N̄out

2 ,din
1 )−u2(x1,Nout

1 ,din
1 )
]
−
[
u2(x2,Nout

2 ,din
2 )−u2(x1,Nout

1 ,din
2 )
]

= α(x2 − x1)+β (din
1 −din

2 )(x2 − x1)

> 0.

Hence, by u2(x2,Nout
2 ,din

2 )> u2(x1,Nout
1 ,din

2 ), we obtain u1(x2, N̄out
2 ,din

1 )> u1(x1,Nout
1 ,din

1 ). But then,

player 1 has incentives to deviate to the strategy (x2, N̄out
2 ), contradicting with our equilibrium supposi-

tion. Therefore, din
1 ≥ din

2 implies x1 ≥ x2.

Claim 2. In every strict equilibrium, if xi ≥ x j, then din
i ≥ din

j .

Suppose xi ≥ x j but din
i < din

j . By Claim 1, din
j > din

i ≥ 0 implies x j ≥ xi. Thus, xi = x j > 0. Hence,

by Lemma 1, dout
i = dout

j . A contradiction then follows: xi = D(βdin
i )−dout

i < D(βdin
j )−dout

j = x j.

Proof of Proposition 1

The condition for existence of a non-empty network strict equilibrium is established by the following

lemma.

Lemma 3. A nonempty equilibrium network exists if and only if β (n−1)≥C′
(

C(1)
α

)
. A nonempty

strict equilibrium network exists if and only if the inequality is strict.

Proof of Lemma 3. We first prove the sufficiency part. Consider the periphery-sponsored star
where player 1 is the sole provider with x1 =D(β (n−1)). Since β (n−1)≥C′

(
C(1)

α

)
>C′ (0),

C′′ (·)> 0, and C′′ (·)> 0, there is a unique x1 > 0 such that β (n−1) =C′ (x1) which yields
x1 = D(β (n− 1)). Given that other players provide zero content, player 1 will form no
link and then x1 = D(β (n−1)) is the unique optimal content provision. A follower has no
incentive to deviate if and only if αx1 −C (1) ≥ 0, i.e., β (n−1) ≥ C′

(
C(1)

α

)
. Thus, this

periphery-sponsored star is an equilibrium network.
Now suppose that a nonempty equilibrium network exists. Then there exist players i and j such

that gi j = 1, which implies

αx j ≥C
(
xi +dout

i
)
−C

(
xi +dout

i −1
)
≥C (1)> 0.
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Then we have x j =D(βdin
j )−dout

j ≤D(β (n−1)) and thus αD(β (n−1))≥C (1), implying β (n−1)≥
C′
(

C(1)
α

)
. The proof is similar for an equilibrium to be strict.

Substituting the functional form C(y) = 1
2 y2 into the condition β (n−1)>C′

(
C(1)

α

)
yields 2αβ >

1
n−1 as specified in Proposition 1.

Now consider a strict equilibrium (x,g). Suppose x1 ≤ x2 ≤ ·· · ≤ xn. i) Suppose that there are

players i and j such that xi < x j and g ji = 1. Pick the largest j with xi < x j and g ji = 1 for some i < j.

Then, by Lemma 1, all players ℓ with xℓ ≤ x j also i. In particular, all ℓ with xℓ = x j > xi follow i. Hence,

our choice of the largest such j implies that, for each ℓ > j, we must have xℓ > x j, while gℓi = 1 for

each ℓ≤ j where ℓ ̸= i. Hence, din
i = j−1. On the other hand, since all ℓ > j have xℓ > x j, no player

ℓ > j follows j. Thus, din
j ≤ j−1. Hence, din

j ≤ din
i . However, by Lemma 2, this implies xi ≥ x j, a

contradiction. Hence, if xi < x j, then g ji = 0.

Next, suppose that there are players i and j with xi < x j and gi j = 0. Pick the smallest j with this

property and gi j = 0 for player i < j. Then by Lemma 1, all those ℓ ≥ i do not follow j. Thus, j’s

indegree is at most i−1. On the other hand, given that j is smallest number with gi′ j = 0 for some i′ < j

and that i < j, all players ℓ < i follow i. Thus, i’s indegree is at least i−1. Hence, din
j ≤ i−1 ≤ din

i .

But then, by Lemma 2, x j ≤ xi, which is a contradiction. Hence, if xi < x j, then gi j = 1.

ii) Suppose that xi = x j and gi j = 1, and consider players ℓ ≥ k ≥ i, with xℓ = xk ≥ x j = xi. Let

D(·) be the inverse function of C′(·). That gi j = 1 implies xℓ = xk ≥ xi > 0. Then, by the first-order

condition ∂ui(xi,x−i,g)
∂xi

= 0, we obtain xi = D(βdin
i )−dout

i . Substituting this back into ui(xi,x−i,g), we

obtain

ui(xi,x−i,g) = α ∑
j

gi jx j +βdin
i D(βdin

i )−βdin
i dout

i −C(D(βdin
i )).

Hence, if i deviates to gi j = 0, the utility change is −αx j +βdin
i . Given gi j = 1 in the strict equilibrium

and x j = xi, we obtain αxi = αD(βdin
i )−αdout

i > βdin
i , leading to f (din

i ) ≡ D(βdin
i )−

β

α
din

i > dout
i .

Note that f ′(d) = β [D′(βd)− 1
α
] ≥ 0 if and only if D′(βd) ≥ 1

α
. By C′(D(βd)) = βd, we obtain

D′(βd) = 1
C′′(D(βd)) . Hence, D′(βd) ≥ 1

α
if and only if C′′(D(βd)) ≤ α . Thus, the assumption

C′′ ≤ α implies f ′(d) ≥ 0∀d > 0. By Lemmas 1 and 2, xℓ = xk ≥ xi implies din
ℓ = din

k ≥ din
i and

dout
ℓ = dout

k ≤ dout
i . Hence, f (din

k )≥ f (din
i )> dout

i ≥ dout
k . Therefore, D(βdin

k )−
β

α
din

k > dout
k , implying

αxℓ > βdin
k . Thus, holding other links fixed, player k’s utility from linking to ℓ minus the utility from

deleting the link is strictly positive: αxℓ−βdin
k > 0. Therefore, k must link to ℓ in the strict equilibrium,

since otherwise k would have incentive to deviate. This completes the proof.

Proof of Proposition 2

Consider a strict equilibrium s = (x,g), we will show that ρ(s) is lower than the cutoff as is specified

in the proposition. First, by Proposition 1, g is a nested upward-linking network with t̄ tiers in g and nt
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players in each tier t of g such that all players in the same tier provide the same content provision level

in a strict equilibrium. We let x[t] denote the content provision of tier t players. Second, we will apply

the following lemma to show that gi j = 0 if x j ≤ xi.

Lemma 4. If α ≤ 1, then gi j = 0 for each i, j such that xi ≥ x j.

Proof of Lemma 4. By Proposition 1, if xi > x j, gi j = 0 and g ji = 1. Now we will prove by

contradiction that gi j = 0 if xi = x j. Suppose that in contrary, there exists a tier t with

nt ≥ 2 and gi j = 1 for any player i and j that belong to tier t. Let nt = ∑
t
t ′=1 nt ′ . Then

x[t] = β (nt −1)−n+nt−1+1, and for some player i that belongs to tier t,

ui(x,g) = α ∑
x j≥xi

x j +β (nt −1)xi −
1
2
(βnt −β )2

= α ∑
x j>xi

x j +α(nt −1)x[t]+β (nt −1)x[t]−
1
2
(βnt −β )2

≤ α ∑
x j>xi

x j +(nt −1)x[t]+β (nt −1)x[t]−
1
2
(βnt −β )2

= α ∑
x j>xi

x j +(nt −1)[β (nt −1)−n+nt−1 +1]+β (nt −1)x[t]

< α ∑
x j>xi

x j +(nt −1)β (nt −1)+β (nt −1)x[t]−
1
2
(βnt −β )2

= α ∑
x j>xi

x j +β (nt −1)(x[t]+nt −1)− 1
2
(βnt −β )2

which is her utility when she deviates to x′i = β (nt − 1)− n+ nt , and deleting her links to
players in the same tier t, where the third inequality holds since α ≤ 1 and the fifth holds since
n− nt−1 ≥ nt − 1 ≥ 1. That is, player i has a weak incentive to deviate to deleting links to
players in the same tier and higher content provision, which is contradiction to (x,g) being a
strict equilibrium. Thus, gi j = 0 if x j = xi.

Thus x[1]= 0, x[2] = βn1 − (n−n1 −n2), and for a player i in tier 1, dout
i = n−n1. To support s as

a strict equilibrium, player i in tier 1 has no incentive to deviate by deleting a link, which requires that

α[βn1 − (n−n1 −n2)]>
(dout

i )2 − (dout
i −1)2

2
= n−n1 −

1
2

Since n− n1 − n2 ≥ 0, we have αβn1 > n− n1 − 1
2 , that is, (αβ + 1)n1 > n− 1

2 . That is 1−ρ(s) =
n1
n > 1

αβ+1 −
1

2(αβ+1)n > 1
αβ+1 −

1
(αβ+1)n . This completes the proof.
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Proof of Proposition 3

For sufficiently large n, a nonempty network equilibrium exists. When a nonempty network equilibrium

exists, it is obvious that an empty network equilibrium is not a payoff-dominant equilibrium. Thus, it

suffices to consider nonempty network equilibria. Consider a strict equilibrium s = (x,g) with t̄ tiers

and nt players in each tier t of g. According to Proposition 1, all players in the same tier provide the

same level of content in a strict equilibrium. We let x[t] denote the content provision of tier t players. It

suffices to show that there exists n∗ and ρ∗ such that, for each n > n∗, if x[1] = 0 and n1
n > 1−ρ∗, then

(x,g) is not a payoff-dominant equilibrium. Let ρL = α2β 2+αβ−β

α2β 2+α2β+2αβ+α
. We will show that there exists

n∗ such that, for any n > n∗, if n1
n > 1−ρL and n1 ≥ 3, then (x,g) is not a payoff-dominant equilibrium.

Note that since α2β +α > 1,

1−ρ
L =

α2β +αβ +α +β

α2β 2 +α2β +2αβ +α
< 1.

By Lemma 4, gi j = 1 if and only if x j > xi. Then, x[1] = 0, and x[2] = βn1 − (n−n1 −n2). Now, we

construct a strategy profile s′ = (x′,g′) which will be shown to be a Pareto improvement and a strict

equilibrium. First, pick a positive integer k < n1 that satisfies:

(αβ +α +1)n1 − (α +1)n
αβ +1

> k >
α

β
(n−n2)− (α +

α

β
−1)n1.

Since n1
n > 1−ρL,

(αβ +α +1)n1 − (α +1)n
αβ +1

>
α

β
n− (α +

α

β
−1)n1 >

α

β
(n−n2)− (α +

α

β
−1)n1.

Moreover, (αβ+α+1)n1−(α+1)n
αβ+1 < (αβ+1)n1

αβ+1 < n1. And since n1
n > 1−ρL and α ≤ 1, we obtain

(αβ +α +1)n1 − (α +1)n
αβ +1

= n
(αβ +α +1)n1

n − (α +1)
αβ +1

> n
(αβ +α +1)(1−ρL)− (α +1)

αβ +1

= n
β

α2β 2 +α2β +2αβ +α

> 0.

Thus, there exists n∗ such that for each n > n∗, such integer k ≥ 1 exists. Second, g′ has t̄ ′ = t̄ +1 tiers,

such that (1) for all players in each of the tiers t ≥ 2 in g, they are placed in tier t +1 in g′ and provide

exactly the same content as before, i.e., x′[t+1] = x[t] for each t ≥ 2; (2) for players in tier 1 in g, they are

divided into two subsets, among which k players are placed in tier 2 in g′, while the remaining players
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stay in tier 1 and provide xi = 0. Let N′
2 ⊂ N denote the set of those k players in tier 2 in g′, and we let

x′i = β (n1 − k)− (n−n1) for each i ∈ N′
2. Let N′

1 ⊂ N denote the set of those n1 − k players in tier 1 in

g′. Finally, if x j > xi then set g′i j = 1; otherwise, set g′i j = 0. There are two steps.

In Step 1, we show that (x′,g′) is an equilibrium. First, as is shown in Lemma 4, no player i has

incentive to deviate by adding links to a player j withxi ≥ x j. Second, for each player i that belongs to

tier t ≥ 2 in g, since (x,g) is a strict equilibrium, and for any j, x′i = xi, g′i j = gi j, g′ji = g ji, player i has

no incentive to deviate. Third, we show that player i ∈ N′
2 has no incentive to deviate. Suppose that she

deletes l outward links. Then her optimal content provision would be x′′i = β (n1 − k)− (n−n1 − l),

and her payoff would be weakly lower than

ui(x′,g′)−αlx[2]+β (n1 − k)l = ui(x′,g′)− l{α[βn1−(n−n1 −n2)]−β (n1 − k)}

< ui(x′,g′),

where the last inequality holds since k > α

β
(n−n2)− (α + α

β
−1)n1. Forth, we show that player i ∈ N′

1

has no incentive to deviate. It suffices to show that she does not want to deviate by deleting her links to

l players in N′
2, that is,

−αl[β (n1 − k)− (n−n1)]− 1
2(n−n1 + k− l)2 + 1

2(n−n1 + k)2 < 0

⇔ α[β (n1 − k)− (n−n1)]> n−n1 + k− l
2

⇔ (αβ +α +1)n1 − (α +1)n+ l
2 > (αβ +1)k

where the last inequality holds since (αβ+α+1)n1−(α+1)n
αβ+1 > k.

In Step 2, we show that ui(x′,g′)≥ ui(x,g) for each i ∈ N, and that the inequality holds strictly for

each i ∈ N′
1. First, for any player i in tier t > 2 in g′, ui(x′,g′) = ui(x,g). Second, for each i ∈ N′

2, ui(x,g)

equals to her payoff in (x′,g′) with deviation to zero content provision, which is lower than ui(x′,g′) by

the definition of equilibrium. Third, for each i ∈ N′
1, ui(x,g) equals her payoff in (x′,g′) when deviating

to deleting her links to all players in N′
2,which is strictly lower than ui(x′,g′) as is shown in Step 1.

To conclude, for each n > n∗ and payoff-dominant equilibrium (x,g), we have n1
n ≤ 1 − ρL,

equivalent to ρ(s)≥ ρL.

Proof of Footnote 15

By Proposition 3, if α2β +α > 1, and α ≤ 1, then there is ρ∗ ∈ (0,1) such that, for sufficiently large n,

we have ρ(s)≥ ρ∗ for each payoff dominant strict equilibrium s = (x,g). Suppose that there are t̄ tiers

in g and nt players in each tier t of g. According to Proposition 1, all players in the same tier provide

the same level of content in a strict equilibrium. We let x[t] denote the content provision of tier t players.

It suffices to show that min{x[t]|x[t] > 0}> ρ∗

2α
n. By Lemma 4, x[1] = 0. Then min{x[t]|x[t] > 0}= x[2].

31



To support (x,g) as a strict equilibrium, some player i in tier 1 has no incentive to delete a link to a

player in tier 2, which requires that

ui(x,g)> ui(x,g)−αx[2]+
1
2(n−n1)

2 − 1
2(n−n1 −1)2

⇔ αx[2] >
1
2(2n−2n1 −1)

⇔ x[2] >
1

2α
(2n−2n1 −1)

Then for n ≤ 1
ρ∗ , since n− n1 ≥ 1,

x[2]
n > 1

2αn(2n− 2n1 − 1) ≥ 1
2αn ≥ ρ∗

2α
> 0. For n > 1

ρ∗ , since

n−n1 ≥ ρ∗n,
x[2]
n > 1

2α
(2ρ∗− 1

n)>
1

2α
(2ρ∗−ρ∗) = ρ∗

2α
> 0.

Proof of Proposition 4

If α < 1, then in any strict equilibrium network with t̄ ≥ 2, we have αx[t]−βnt−1 < 0 for all t ≥ 2,

where x[t] = βnt−1 − (n−nt) is the optimal content provision of each tier-t player. This implies that if

there are at least two players in tier t ≥ 2, then they have no incentive to link each other in equilibrium.

Hence, the payoff of each player in tier t ≥ 2 is

u[t] = α

(
t̄

∑
k=t+1

nkx[k]

)
+βnt−1x[t]−

1
2
[
x[t]+(n−nt)

]2
.

We now consider the following two cases separately: (i) t ≥ 3 and (ii) t = 2. In the first case, given

t ≥ 3, we have t −1 ≥ 2, and thus x[t−1] = βnt−2 − (n−nt−1)> 0. Hence,

u[t]−u[t−1] =−αntx[t]+
β 2

2
(nt−1 +nt−2)nt−1 −β [nnt−1 −nt−1 (nt +nt−1)]

>−βnt−1nt +
β 2

2
(nt−1 +nt−2)nt−1 −β [nnt−1 −nt−1 (nt +nt−1)]

=
β 2

2
(nt−1 +nt−2)nt−1 −β (n−nt−1)nt−1

>
β 2

2
(nt−1 +nt−2)nt−1 −β

2nt−2nt−1

=
β 2

2
(nt−1)

2

> 0.
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In the second case, t = 2. Then, t −1 = 1, x[1] = 0, and u[1] = α
(
∑

t̄
k=2 nkx[k]

)
− 1

2 (n−n1)
2. Hence,

u[2]−u[1] =−αn2x[2]+
1
2
(βn1)

2 −βn1 (n−n1 −n2)+
1
2
(n−n1)

2

>−βn1n2 +
1
2
(βn1)

2 −βn1 (n−n1 −n2)+
1
2
(n−n1)

2

=
1
2
(βn1)

2 −βn1 (n−n1)+
1
2
(n−n1)

2

=
1
2
[(βn1)− (n−n1)]

2

≥ 0.

In either case, u[t] > u[t−1], completing the proof.

Proof of Proposition 5

Suppose α ≥ 1. Then for strict equilibrium networks with t̄ ≥ 2, there are four cases for adjacent tiers t

and t −1 to consider, where t ≥ 2: (i) t ≥ 3 where players link each other within tier t −1, (ii) t ≥ 3

where players do not link each other within tier t −1 but players link each other within tier t, (iii) t = 2

where players link each other within tier 2, and (iv) t ≥ 2 where nt ≥ 2 and players do not link each

other within tier t.

First, if players link each other within tier t ≥ 2, the payoff of each player is

u[t] = α

(
t̄

∑
k=t

nkx[k]− x[t]

)
+β (nt −1)x[t]−

1
2
[
x[t]+(n−nt−1 −1)

]2
,

where x[t] = β (nt −1)− (n−nt−1 −1) is the optimal content provision of each tier-t player. If players

do not link each other within tier t ≥ 2, the payoff of each player is

u[t] = α

(
t̄

∑
k=t+1

nkx[k]

)
+βnt−1x[t]−

1
2
[
x[t]+(n−nt)

]2
,

where x[t] = βnt−1 − (n−nt) is the optimal content provision of each tier-t player.

For case (i), we have x[t−1] = β (nt−1 −1)− (n−nt−2 −1)> 0. Then

u[t]−u[t−1] =−α
[
(nt−1 −1)x[t−1]+ x[t]

]
+

β 2

2
(nt +nt−1 −2)nt

−β [(n−nt−1 −1)nt − (nt−1 −1)nt−1] ,

which is strictly decreasing in α . Since u[t] − u[t−1] → −∞ as α → +∞ and u[t] − u[t−1] → +∞ as

α → −∞, there exists a real number α̂(β ,n,nt ,nt−1, n̄t−1) ∈ R such that u[t] − u[t−1] = 0. Hence,
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u[t] ≤ u[t−1] if α ≥ max{1, α̂(β ,n,nt ,nt−1, n̄t−1)} and u[t] > u[t−1] if α̂(β ,n,nt ,nt−1, n̄t−1) > 1 and

1 ≤ α < α̂(β ,n,nt ,nt−1, n̄t−1).

For case (ii), we have x[t] = β (nt −1)− (n−nt−1 −1)> 0. Then

u[t]−u[t−1] =−αx[t]+
β 2

2
(nt +nt−2 −1)(nt +nt−1 −1)

+β [(nt −1)− (n−nt−1)(nt +nt−1 −1)] ,

which is strictly decreasing in α . Since u[t] − u[t−1] → −∞ as α → +∞ and u[t] − u[t−1] → +∞ as

α → −∞, there exists a real number α̂(β ,n,nt ,nt−1, n̄t−1) ∈ R such that u[t] − u[t−1] = 0. Hence,

u[t] ≤ u[t−1] if α ≥ max{1, α̂(β ,n,nt ,nt−1, n̄t−1)} and u[t] > u[t−1] if α̂(β ,n,nt ,nt−1, n̄t−1) > 1 and

1 ≤ α < α̂(β ,n,nt ,nt−1, n̄t−1).

For case (iii), we have x[2] > 0, x[1] = 0, and u[1] = α
(
∑

t̄
k=2 nkx[k]

)
− 1

2 (n−n1)
2. Then

u[2]−u[1] =−αx[2]+β (n2 −1)+
1
2
[β (n2 −1)− (n−n1)]

2 ,

which is strictly decreasing in α . Since u[2]−u[1] →−∞ as α →+∞ and u[2]−u[1] →+∞ as α →−∞,

there exists a real number α̂ (β ,n,n1,n2) ∈ R such that u[2] − u[1] = 0. Hence, u[2] ≤ u[1] if α ≥
max{1, α̂ (β ,n,n1,n2)} and u[2] > u[1] if α̂ (β ,n,n1,n2)> 1 and 1 ≤ α < α̂ (β ,n,n1,n2).

For case (iv), since nt ≥ 2 and players do not link each other within tier t, we have αx[t]−βnt−1 < 0,

where x[t] = βnt−1 − (n−nt). Then following the proof of Proposition 4, u[t] > u[t−1].

Proof of Example 1

Considering each player’s incentives to participate and link/not link another player. Below are the

equilibrium conditions for each case.

For Network (a), the equilibrium conditions are{
αx− 1

2 > 0

(1−δ )αx− 1
2 < 0

⇒

{
αβ > 1

6

0 < 1−δ < 1
6αβ

where x = 3β is the optimal provision of player 1.

For Network (b), the equilibrium conditions are
αx− 1

2 > 0

(1−δ )αx− 3
2 < 0

(1−δ )αx−3β < 0

⇒


αβ > 1

6

0 < 1−δ < 1
2αβ

0 < 1−δ < 1
α

where x = 3β is the optimal provision of each player 1 and player 8.
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For Network (c), the equilibrium conditions are
αx1 − 3

2 > 0

(1−δ )αx8 − 3
2 > 0

(1−δ )αx1 − 3
2 < 0

(1−δ )αx8 −3β < 0

⇒


αβ > 1

2

1−δ > 1
4αβ

0 < 1−δ < 1
2αβ

0 < 1−δ < 1
2α

where x1 = 3β and x8 = 6β are the optimal provisions of players 1 and 8, respectively.

Note that there are no equilibrium conditions for all the three networks because Network (a) and

Network (c) cannot coexist. Network (a) and Network (b) are strict equilibrium networks when αβ > 1
6

and 0 < 1− δ < min{ 1
6αβ

, 1
α
}, and Network (c) a strict equilibrium network when αβ > 1

2 , β > 1
2 ,

and 1
4αβ

< 1−δ < min{ 1
2αβ

, 1
2α
}.

Proof of Proposition 6

We prove using a general cost function C(·), with C (0)≥ 0, C′(·)> 0, C′′(·)> 0, and limy→+∞
C′(y)

y =

γ ∈ (0,+∞), where C′(·) is invertible and the inverse function is denoted by D(·) ≡ C
′−1 (·). Sup-

pose β (n−1) > C
′
(

C(1)
(1−δ )α

)
. Consider the periphery-sponsored star where player 1 provides x1 =

D(β (n−1)) of good A and follows no one, and all of the remaining n−1 players provide zero content

and follow no other players but player 1. Apparently, player 1 has no incentive to deviate. And a follower

in NB has no incentive to deviate if and only if (1−δ )αx1 −C (1)> 0, i.e., β (n−1)>C
′
(

C(1)
(1−δ )α

)
.

This condition also implies that no follower in NA would deviate either. Hence, this periphery-sponsored

star constitutes a strict nested upward-linking equilibrium network without isolated agents. Finally,

we can substitute the functional form C (y) = 1
2 y2 into the inequality β (n−1)>C

′
(

C(1)
(1−δ )α

)
to verify

that it gives the condition 2αβ (1−δ )> 1
n−1 specified in the proposition.

Proof of Proposition 7

Claim 1. For each x ∈ Rn
+ and g∗ ∈ G∗(x), there exists a transfer profile τ such that g(τ) = g∗, and it

is pairwise stable and a Nash equilibrium in the Stage 2 subgame.

Consider g∗ ∈ G∗(x) and that x1 ≥ ·· · ≥ xn. Let dout
i be i’s outdegree in g∗. Let zi = max{x j| j ∈

N, j ̸= i,g∗i j = 0}. By construction, g∗i j = 1 implies αx j −∆C(xi,dout
i )≥ η and g∗i j = 0 implies αx j −

∆C(xi,d)< η for each d > dout
i . Consider the following τ ∈T: 1) if g∗i j = g∗ji = 1, then let τi j = τ ji = η ;

2) if g∗i j = 1 and g∗ji = 0, then let τi j = min{α(x j − zi)+η ,αx j −∆C(xi,dout
i )} and τ ji = η − τi j; 3) if

g∗i j = g∗ji = 0, then let τi j = τ ji = 0. Then, g(τ) = g∗.

Step 1: We show that τ is a Nash equilibrium in the Stage 2 subgame.

Suppose that i deviates to τ ′
i ̸= τi and i’s utility change is ∆ui. First, suppose g(τ ′

i ,τ−i) = g∗. Then,

for each j with g∗i j = 0, we have τ ′
i j < τi j and a change to any τ ′

i j < ε does not change i’s utility. For
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each j with g∗i j = 1, we have τ ′
i j ≥ τi j, since τi j = η − τ ji is the minimum transfer to maintain the

link from i to j. If τ ′
i j = τi j for each j with g∗i j = 1, then u′i = ui. If τ ′

i j > τi j for some j with g∗i j = 1,

then ∆ui < 0, because i pays more transfers. Hence, i has no strict incentive to deviate to any τ ′
i with

g(τ ′
i ,τ−i) = g∗.

Next, suppose g(τ ′
i ,τ−i) = g′ ̸= g∗, and i’s outdegree in g′ is dout

i (g′). First, suppose dout
i (g′) =

dout
i (g∗). Then, τ ′

i j < τi j for some j with g∗i j = 1 so that g′i j = 0, and τ ′
ik ≥ η > τik for the same number

of players k with with g∗ik = 0 to make g′ik = 1. Thus, we can match those j to those k so that the change

in utility, ∆ui, sums up the utility changes due to adding a link to a k with g∗ik = 0 and simultaneously

deleting a link to j with g∗i j = 1, while maintaining the same outdegree. For each of such switch of

links, the change in i’s utility is (weakly) negative:

−αx j + τi j +αxk − τ
′
ik ≤ τi j − [α(x j − xk)+η ]≤ τi j − [α(x j − zi)+η ]≤ 0,

where the first inequality follows from τ ′
ik ≥ η , the second inequality follows from xk ≤ zi for each

k with g∗ik = 0, and the last inequality is due to τi j ≤ α(x j − zi)+η by construction. Hence, i cannot

improve by deviating to any τ ′
i with dout

i (g′) = dout
i (g∗).

Second, suppose dout
i (g′)> dout

i (g∗). We break down the change from τi to τ ′
i into two steps and

show that i cannot improve in either step. In the first step, i increases the transfers to some k with

g∗ik = 0 to make g′ik = 1 and decreases the transfers to the same number of players j with g∗i j = 1 to

make g′i j = 0. This step only involves switch of links and i’s outdegree is not changed. In the second

step, i increases transfers to a further subset of players k with g∗ik = 0 to make g′ik = 1. This step only

involves adding new links. We have shown that no τ ′
i with dout

i (g′) = dout
i (g∗) can strictly improve i’s

utility. Hence, i cannot improve in the first step. Consider the second step. Consider k with g∗ik = 0 and

let dk
i be i’s outdegree right after adding the link to k. Since dk

i ≥ dout
i (g∗)+1, forming each new link

to k results in a negative change in i’s utility:

αxk −∆C(xi,dk
i )− τ

′
ik ≤ αxk −∆C(xi,dout

i (g∗)+1)−η < 0.

Hence, i cannot improve in the second step.

Third, consider dout
i (g′) < dout

i (g∗). Similarly to the last case, we consider the change from τi

to τ ′
i involving two steps. The first step only involves switch of links. We have shown that this

step cannot improve i’s utility. The second step only involves deleting links to some j with g∗i j = 1.

Let d j
i denote i’s outdegree right before deleting the link to such j. Then, given d j

i ≤ dout
i (g∗) and

τi j ≤ αx j −∆C(xi,dout
i (g∗)), player i’s utility change due to deleting the link to j is

−αx j +∆C(xi,d
j
i )+ τi j ≤−αx j +∆C(xi,dout

i (g∗))+ τi j ≤ 0.

Hence, i cannot strictly improve in the second step.
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Step 2: We show that τ is pairwise stable.

Suppose not, and there are pairwise deviations, (τ ′
i ,τ

′
j), by i and j such that ui(τ−i j,τ

′
i ,τ

′
j,x) >

ui(τ,x) and u j(τ−i j,τ
′
i ,τ

′
j,x) ≥ u j(τ,x). Let ∆ui = ui(τ−i j,τ

′
i ,τ

′
j,x)− ui(τ,x) and g′ = g(τ−i j,τ

′
i ,τ

′
j).

If τ ′
i j = τi j or τ ′

ji = τ ji, then the impact of (τ ′
i ,τ

′
j) on ui is the same as player i making a unilateral

deviation to τ ′
i , i.e., ui(τ−i j,τ

′
i ,τ

′
j,x) = ui(τ−i,τ

′
i ,x). We have shown that i cannot strictly improve by

any unilateral deviation. In all of the following cases, suppose τ ′
i j ̸= τi j and τ ′

ji ̸= τ ji.

First, suppose g′i j = g′ji = 0. Then regardless of whether g∗i j +g∗ji ≥ 1 or g∗i j +g∗ji = 0, the pairwise

deviations result in the same ∆ui as that of i making a unilateral deviation to some τ ′′
i with τ ′′

ik = τ ′
ik for

each k ̸= j and with a sufficiently small τ ′′
i j < 0. Hence, i cannot strictly improve: ∆ui ≤ 0. Second,

suppose g′i j +g′ji ≥ 1 and g∗i j = g∗ji = 1. In the case of τ ′
i j < τi j = η , i breaks the link to j. In the case of

τ ′
i j > η , i increases the transfer to j. In either case, the same utility for i can be achieved by unilaterally

deviating to τ ′
i . Hence, ∆ui ≤ 0. Third, suppose g′i j + g′ji ≥ 1, g∗i j = 0, and g∗ji = 1. If g′i j = 0, then

g′ji = 1, and i can strictly improve only if τ ′
i j < τi j and τ ′

ji ≥ η − τ ′
i j > η − τi j = τ ji. But then, j is

strictly worse off. If g′i j = 1, then τ ′
i j ≥ η , and ui(τ−i j,τ

′
i ,τ

′
j,x) = ui(τ−i,τ

′
i ,x). Hence, ∆ui ≤ 0.

Finally, suppose g′i j +g′ji ≥ 1, g∗i j = 1, and g∗ji = 0. If g′i j = 1, then i is strictly better off only if

τ ′
i j < τi j and τ ′

ji ≥ η − τ ′
i j > η − τi j = τ ji. Then, j is strictly worse off. Now, suppose g′i j = 0. Then

g′ji = 1 and τ ′
ji ≥ η , i.e., j forms a new link to i in g′. But then, u j(τ−i j,τ

′
i ,τ

′
j,x) = u j(τ− j,τ

′
j,x). Hence,

∆u j ≤ 0, and we have ∆u j = 0 only if j simultaneously deletes a link to a player k with g∗jk = 1, so that

dout
j (g′) = dout

j (g∗) and

∆u j =−αxk + τ jk +αxi − τ
′
ji + τ ji

≤−α(xk − xi)+α(xk − z j)+η − τ
′
ji + τ ji

≤−α(z j − xi)− (τ ′
ji −η)− (τi j −η).

Hence, ∆u j = 0 only if τ ′
ji = τi j = η , given τi j ≥ η by g∗i j = 1. And given g′ji = 1, we have τ ′

i j +τ ′
ji ≥ η .

Thus, τ ′
i j ≥η−τ ′

ji = 0. In the most favorable case to i, τ ′
i j = 0. But then, ui(τ−i j,τ

′
i ,τ

′
j,x)= ui(τ−i,τ

′
i ,x).

Therefore, ∆ui ≤ 0.

Claim 2. If n ≥ 2η/α2 +1 and α ≤ 1, then there exists (x∗, τ̂∗)⊂ S∗(α) such that i) g(τ̂∗(x)) is a nested

upward-linking network, ii) xi > x j = 0 for some i and j, and iii) as n → ∞, the fraction of players with

xi > 0 approaches 1−
√

1
1+α2 .

Most part of our arguments apply to a general C(·) that satisfies C (0)≥ 0, C′(·)> 0, C′′(·)> 0. We

will indicate explicitly when we apply the functional form C(y) = 1
2 y2. Consider N1,N2 ⊂ N such that

N2 = {1,2, . . . , I} and N1 = {I +1, . . . ,n}, with 1 ≤ I ≤ n−1. The exact number of I is determined in

Step 1 below. Let x∗ ∈Rn
+ be such that x∗i = 0∀i∈N1 and x∗i =D(α(n− I))∀i∈N2. Let τ̂ = (τ̂1, . . . , τ̂n)

denote the transfer strategy profile considered in the proof of Claim 1, so that g(τ̂(x)) ∈ G∗(x) for each

x ∈ Rn
+. Consider τ̂∗ such that for each x ∈ Rn

+ and i, j ∈ N, i ̸= j: if x j > D(α(n− I)), gi j(τ̂(x)) = 1
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and g ji(τ̂(x)) = 0, then τ̂∗
i j(x) =min{τ̂i j(x),D(α(n− I))−∆C(0, I)} and τ̂∗

ji(x) = η− τ̂∗
i j(x); otherwise,

τ̂∗
i j(x) = τ̂i j(x). Then, g(τ̂∗(x)) = g(τ̂(x)) ∈ G∗(x)∀ ∈ Rn

+. We show that, with a suitably selected I,

(x∗, τ̂∗)⊂ S∗(α). Applying the same arguments we use to prove Claim 1, one can verify that, for each

x ∈ Rn
+, τ̂∗(x) ∈ T is pairwise stable and a Nash equilibrium given x. In the following, we show that

given x∗−i, x∗i is a best-response in Stage 1 for each i ∈ N, given the anticipation that all players make

transfers according to τ̂∗(x) in Stage 2 for each x ∈ Rn
+.

For each i ∈ N, given x∗−i, let ui(xi,dout
i ,din

i ;g(τ̂(xi,x∗−i))) denote i’s utility given her provision xi,

her outdegree dout
i , and indegree din

i in network g(τ̂(xi,x∗−i)). When the network g(τ̂(xi,x∗−i)) referred

to is clear, we drop the network argument and write ui(xi,dout
i ,din

i ).

Step 1: Determine I∗.

Let g∗ = g(τ̂(x∗)). Consider an i ∈ N2. Let m1 = min{m ≥ 4|αD(α(m− I))−∆C(0, I) ≥ η}.

Then, αD(α(n− I))−∆C(0, I)≥ η for each n ≥ m1. Assume n ≥ m1. Then g∗ji = 1 for each j ∈ N1

and i ∈ N2. Moreover, given C(T ) = 1
2 T 2 and α < 1, we obtain for each d ∈ {1, . . . , I −1},

αD(α(n− I))−∆C(D(α(n− I)),d) = α
2(n− I)− 1

2
[2α(n− I)+2d −1]

≤ α(α −1)(n− I)− 1
2

< η .

Hence, g∗i j = 0 for each i, j ∈ N2. Therefore, in g∗, player i follows no player and is followed by all

players in N1. Hence, i’s utility given x∗ and transfers τ̂(x∗) is

ui(D(α(n− I)),0,n− I) =−C(D(α(n− I)))+(n− I)[αD(α(n− I))−∆C(0, I)−η ].

Suppose that i deviates to xi = 0. Then, i loses all followers from N1, and follows all other players in

N2, because αD(α(n− I))−∆C(0, I −1)> αD(α(n− I))−∆C(0, I)≥ η . Thus, i’s utility from the

deviation is

ui(0, I −1,0) = (I −1)αD(α(n− I))−C(I −1)− (I −1)[αD(α(n− I))−∆C(0, I −1)]

=
I−1

∑
d=1

[
∆C(0, I −1)−∆C(0,d)

]
.

Let I∗ be the largest integer I such that ui(D(α(n− I)),0,n− I)≥ ui(0, I−1,0). Note that ui(0, I−1,0)

is increasing in I, and given n ≥ 3, ui(D(α(n− I)),0,n− I) = 0 < ui(0, I −1,0) at I = n. If n ≥ m2 =

2η/α2 +1, then ui(D(α(n− I)),0,n− I)≥ ui(0, I−1,0) = 0 at I = 1. From ui(D(α(n− I)),0,n− I)≥
ui(0, I − 1,0) ≥ 0, we obtain αD(α(n− I))−∆C(0, I) ≥ η . Thus, m2 ≥ m1. Therefore, n ≥ m2 is

sufficient to guarantee that a unique I∗ exists, 1 ≤ I∗ ≤ n−1, and ui(D(α(n− I)),0,n− I)≥ 0. Now,

let I = I∗. Then by construction, no i ∈ N2 has incentive to deviate to xi = 0. Given C(T ) = 1
2 T 2, we
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have

lim
n→∞

I∗

n
= 1−

√
1

1+α2 .

Step 2: Given I = I∗, no i ∈ N2 has incentive to deviate from x∗i = D(α(n− I)).

Consider a deviation in a neighborhood of D(α(n− I)). Let xL be i’s minimum provision for a

player j ∈ N1 to follow i, which satisfies αxL −∆C(xL, I) = η and 0 < xL < D(α(n− I)). Then, for

each xi ∈ [xL,D(α(n− I))], player i’s utility from the deviation is

ui(xi,0,n− I) =−C(xi)+(n− I)[αxi −∆C(0, I)−η ],

which is maximized at xi = D(α(n− I)). If i deviates to xi > D(α(n− I)), then by construction

τ̂∗
i j(xi,x∗−i) = D(α(n− I))−∆C(0, I) and τ̂∗

ji(xi,x∗−i) = η − τ̂∗
i j(xi,x∗−i), resulting in ui(xi,0,n− I) <

ui(D(α(n− I)),0,n− I). Therefore, i has no incentive to deviate to any xi ≥ xL and xi ̸= D(α(n− I)).

Consider a deviation xi < xL, leading to network g′ = g(τ̂(xi,x∗−i)). Then in g′, player i loses all

followers from N1 and follows dout
i (xi) other players in N2, where dout

i (xi) = max{d|αD(α(n− I))−
∆C(xi,d)≥ η}. Define y† > 0 by αD(α(n− I))−∆C(y†, I −1) = η . Then, for each xi > y†, we have

dout
i (xi)≤ I−1, and τ̂i j(xi,x∗−i) = η for each j ∈ N2 with gi j(τ̂(xi,x∗−i)) = 1. If I∗ = 1, then dout

i (xi) = 0

for each xi < xL and ui(xi,dout
i (xi),0) = 0. If I∗ ≥ 2, then i’s utility from deviating to xi ∈ (y†,xL) is

ui(xi,dout
i (xi),0) = dout

i (xi)αD(α(n− I))−C(xi +dout
i (xi))−dout

i (xi)η

=
dout

i (xi)

∑
d=1

[
αD(α(n− I))−∆C(xi,d)−η

]
−C(xi),

which is decreasing in xi, because dout
i (xi) is decreasing in xi and αD(α(n− I))−∆C(xi,d)≥ η for

each d ∈ {1, . . . ,dout
i (xi)}. Thus, ui(y†, I −2,0)≥ ui(xi,dout

i (xi),0) for each xi with y† < xi < xL.

Next, consider xi ≤ y†. We have dout
i (xi) = I −1 and τ̂i j(xi,x∗−i) = αD(α(n− I))−∆C(xi, I −1)

for each j ∈ N2, j ̸= i. Thus, the utility for i when xi ≤ y† is

ui(xi, I −1,0) = (I −1)αD(α(n− I))−C(xi + I −1)− (I −1)[αD(α(n− I))−∆C(xi, I −1)]

=
I−1

∑
d=1

[
∆C(xi, I −1)−∆C(xi,d)

]
−C(xi)

=
I−1

∑
d=1

[
(xi + I − 3

2
)− (xi +d − 1

2
)
]
−C(xi)

=
I−1

∑
d=1

(I −d −1)−C(xi),

where the third equality uses C(T ) = 1
2 T 2. Hence, ui(0, I −1,0)> ui(xi, I −1,0) for each 0 < xi ≤ y†.

In particular, ui(0, I − 1,0) > ui(y†, I − 1,0). And since ui(y†, I − 1,0) > ui(y†, I − 2,0), we obtain
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ui(0, I −1,0)> ui(y†, I −2,0). By our choice of I = I∗, we have ui(D(α(n− I)),0,n− I)≥ ui(0, I −
1,0). Thus, we establish that i ∈ N2 has no incentive to deviate to any xi < D(α(n− I)).

Step 3: Given I = I∗, no i ∈ N1 has incentive to deviate from xi = 0.

First, by our choice of I = I∗, ui(D(α(n− I −1)),0,n− I −1)< ui(0, I,0) for each i ∈ N1. Hence,

no i ∈ N1 has incentive to deviate to xi = D(α(n− I − 1)). Next, observe that our arguments in

Step 2 to show that for each i ∈ N2, 1) ui(0, I − 1,0) > ui(xi, I − 1,0) for each xi ∈ (0,y†] and 2)

ui(0, I − 1,0) > ui(y†, I − 2,0) ≥ ui(xi,dout
i (xi),0) for each xi ∈ (y†,xL) apply to any 1 ≤ I ≤ n− 1.

Hence, replacing I−1 with I, and I−2 with I−1, in the utility functions in the last sentence, we obtain

that for each i ∈ N1, 1) ui(0, I,0)> ui(xi, I,0) for each xi ∈ (0,y†] and 2) ui(0, I,0)> ui(y†, I −1,0)≥
ui(xi,dout

i (x′i),0) for each xi ∈ (y†,xL), given that y† is defined by αD(α(n− I))−∆C(y†, I) = η and

xL is defined by αxL −∆C(xL, I −1) = η for each i ∈ N1. Then, i ∈ N1 has no incentive to deviate to

any xi ∈ (0,xL). And when xi ≥ xL, the best choice for i is xi = D(α(n− I−1)), which has been shown

to be worse than xi = 0. Hence, each i ∈ N1 has no incentive to deviate from xi = 0.
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Online Appendix

This supplementary material generalizes Propositions 2 and 3 and the remark in Footnote 15 in the

main text to cover the case of α > 1. Proposition 8 also considers an arbitrary δ ∈ [0,1) in the model

with horizontal differentiation presented in Section 4.1 in the main text.

Generalization of Proposition 2

The following proposition extends Proposition 2 to the model with horizontal differentiation presented

in Section 4.1 for any δ ∈ [0,1). Since the special case of δ = 0 reduces to the baseline model without

heterogenous preferences over content categories, Proposition 2 can also be proved as a corollary of the

following proposition.

Proposition 8. Consider the model with possible heterogenous preferences over content categories in

Section 4.1.

1. If α > 1 and αβ −α −β > 0, then for each δ ∈ [0,1), there exists a strict equilibrium s with

ρ(s) = 1 for each sufficiently large n.

2. If α > 1, αβ −α −β ≤ 0, and δ = 0, then ρ(s)< max{ αβ

αβ+1 +
1

2(αβ+1)n ,
αβ−β

α
+ α+β−αβ

αn }.

3. If α ≤ 1, then for each δ ∈ [0,1), we have ρ(s)< αβ

αβ+1 +
1

(αβ+1)n for each strict equilibrium s.

The proof of Proposition 8 has three parts.

In Part 1, we prove that if α > 1 and αβ −α −β > 0, then there exists a strict equilibrium s such

that ρ(s) = 1. Note that αβ −α −β > 0 implies β > 1. There are three cases.

In Case 1, (1−δ )αβ − (1− δ )α −β > 0. It suffices to show that the following strategy can be

proved as a strict equilibrium: each player i provides xi = (β − 1)(n− 1), and gi j = 1 for any i, j.

Player i has no incentive to deviate by deleting any l links and producing some x′i since her payoff will

be weakly lower than

αxi(
n
2 −1)+(1−δ )αxi(

n
2 − l)+β (n−1)x′i − 1

2(x
′
i +n−1− l)2

≤ αxi(
n
2 −1)+(1−δ )αxi(

n
2 − l)+β (n−1)(xi + l)− 1

2 [β (n−1)]2

= ui(x,g)− [(1−δ )αxi −β (n−1)]l

< ui(x,g).

In Case 2, (1− δ )αβ − (1− δ )α − β = 0. It suffices to show that the following strategy can

be proved as a strict equilibrium for sufficiently large n: for some integer (αβ−α−β )(n−2)
2(αβ+α−β ) > m >
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(αβ−α−2β )(n−2)−2β

2(αβ+α) ,

xi =

x[1] = β (n
2 −m−1)− (n

2 +m−1) if i ∈ {1, ..., n
2 −m}∪{ n

2 +1, ...,n−m}

x[2] = β (n−1)− (2m−1) if i ∈ {n
2 −m+1, ..., n

2}∪{n−m+1, ...,n}
,

ωi =

A if i ∈ {1, ..., n
2}

B if i ∈ {n
2 +1, ...,n}

,

gi j =


1 if x j = x[2]

1 if xi = x[1], ω j = ωi

0 otherwise

.

Such m ≥ 1 exists for sufficiently large n. First, similarly to Case 1, player i with xi = x[2] has no

incentive to deviate by deleting any l links and producing some x′i. Second, player i with xi = x[2] has

no incentive to deviate by adding any l links and producing some x′i since her payoff will be weakly

lower than

αx[2](m−1)+(1−δ )αx[2]m+αx[1]l +β (n−1)x′i − 1
2(x

′
i +2m−1+ l)2

≤ αx[2](m−1)+(1−δ )αx[2]m+αx[1]l +β (n−1)(xi − l)− 1
2 [β (n−1)]2

= ui(x,g)+ [αx[1]−β (n−1)]l

< ui(x,g)

where the last inequality holds since m > (αβ−α−2β )(n−2)−2β

2(αβ+α) . Similarly, since (1−δ )αβ − (1−δ )α −
β = 0, player i such that xi = x[1] has no incentive to deviate by adding any l links and producing some

x′i. Third, player i with xi = x[1] has no incentive to deviate by deleting any l links to some j with

x j = x[1],ω j = ωi and producing some x′i since her payoff will be weakly lower than

αx[2]m+(1−δ )αx[2]m+αx[1](
n
2 −m−1− l)+β (n

2 −m−1)x′i − 1
2(x

′
i +

n
2 +m−1)2

≤ αx[2]m+(1−δ )αx[2]m+αx[1](
n
2 −m−1− l)+β (n

2 −m−1)(xi + l)− 1
2 [β (

n
2 −m−1)]2

= ui(x,g)− [αx[1]−β (n
2 −m−1)]l

< ui(x,g)

where the last inequality holds since m < (αβ−α−β )(n−2)
2(αβ+α−β ) . Forth, similarly to Case 1, player i with

xi = x[1] has no incentive to deviate by deleting any l links to some j with x j = x[2],ω j ̸= ωi.

In Case 3, (1−δ )αβ − (1−δ )α −β < 0. It suffices to show that the following strategy can be
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proved as a strict equilibrium: for each player i ∈ Nωwith ω = A,B, xi = (β −1)(n
2 −1),

gi j =

1 if j ∈ Nω

0 otherwise
.

Similarly to Case 1, player i has no incentive to deviate by deleting any l links and producing x′i.

Moreover, player i has no incentive to deviate by adding any l links and producing x′i since her payoff

will be

αxi(
n
2 −1)+(1−δ )αxil +β (n

2 −1)x′i − 1
2(x

′
i +

n
2 −1+ l)2

≤ αxi(
n
2 −1)+(1−δ )αxil +β (n

2 −1)(xi − l)− 1
2 [β (

n
2 −1)]2

= ui(x,g)+ [(1−δ )αxi −β (n
2 −1)]l

< ui(x,g).

In Part 2, we prove that if α > 1, αβ −α −β ≤ 0, and δ = 0, then in a strict equilibrium s, ρ(s) is

lower than the cutoff as is specified in the proposition. By Proposition 1, g is a nested upward-linking

network with t̄ tiers and nt players in each tier t. Since all players in the same tier provide the same level

of content in a strict equilibrium, we let x[t] denote the content provision of tier t players. Moreover,

gi j = 0 if x j < xi. Similarly to Case 1 in Part 1, we can prove by contradiction that x[1] = 0 by showing

that otherwise each player in tier 1 has weak incentive to deviate by deleting a link. There are two cases.

In Case 1, for each i and j in tier 2, gi j = 0. Then x[2] = βn1 − (n−n1 −n2). To support it as a strict

equilibrium, each player i in tier 1 has no incentive to deviate by deleting a link, which requires that

αx[2] = α[βn1 − (n−n1 −n2)]>
1
2

[
(n−n1)

2 − (n−n1 −1)2
]
= n−n1 − 1

2 .

Since n−n1 −n2 ≥ 0, we have αβn1 > n−n1 − 1
2 . Thus, 1−ρ(s) = n1

n > 1
αβ+1 −

1
2(αβ+1)n . In Case

2, for each i and j in tier 2, gi j = 1. Then x[2] = β (n1 + n2 − 1)− (n− n1 − 1). To support it as a

strict equilibrium, each player i in tier 2 has no incentive to deviate by deleting a link and deviating to

x′i = x[2]+1, which requires that

αx[2]−β (n1 +n2 −1) = α[β (n1 +n2 −1)− (n−n1 −1)]−β (n1 +n2 −1)> 0.

Thus β (α −1)(n1+n2−1)−α(n−n1−1)> 0. Since n1+n2 ≤ n, we have β (α −1)(n−1)−α(n−
n1 −1)> 0. Thus, 1−ρ(s)> α+β−αβ

α
− α+β−αβ

αn .

In Part 3, we prove that if α≤1, then in a strict equilibrium s, ρ(s) is lower than the cutoff as is

specified in the proposition. Similarly to Lemma 4, since α≤1, we have gi j = 0 if x j ≤ xi. For ω = A

or B, respectively, define a network gω which consists of players who provide good ω or does not
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provide but belongs to Nω such that (1) we order gω according to content provision level; (2) it has t̄ω

tiers and nω
t players in tier t. We let xω

[t] denote the content provision of tier t players in the network gω

and n̄ω = ∑
t̄ω

t=1nω
t . In a strict equilibrium, for i, j in the same tier t of the same network gω ,dout

i = dout
j

and we denote it as dω

[t]. By definition, each player i belongs to one tier of either gAor gB. There are

three cases.

In Case 1,for each ω and each player i in tier 1 of network gω , gi j = 0 if j is in tier t of gω ′
where

t = min{t̃|xω ′

t̃ > 0}. Then in each gω , xω

[1]= 0, xω

[2] = βnω
1 −dω

[2] and gi j = 1 for each i in tier 1 of gωand

each j in tier t ≥ 2 of gω . To support s as a strict equilibrium, player i in tier 1 of gωhas no incentive to

deviate by deleting a link, which requires that

α(βnω
1 −dω

[2])>
1
2

[
(dout

i )2 − (dout
i −1)2

]
= dout

i − 1
2 ≥ n̄ω −nω

1 − 1
2

where the last inequality follows from dout
i ≥ n̄ω −nω

1 . Since dω

[2] ≥ 0, we have αβnω
1 > n̄ω −nω

1 − 1
2 ,

that is, (αβ +1)nω
1 > n̄ω − 1

2 . Then (αβ +1)∑ω∈{A,B} nω
1 >∑ω∈{A,B} n̄ω −1= n−1, that is 1−ρ(s) =

∑ω∈{A,B} nω
1

n > 1
αβ+1 −

1
(αβ+1)n .

In Case 2, there exists a unique ω such that a player i in tier 1 of network gω , gi j = 1 if j is in

tier t of gω ′
where t = min{t̃|xω ′

t̃ > 0}. Without loss of generality, let ω = A. Thus, in gA, xA
[1]= 0,

xA
[2] = βnA

1 −dA
[2] and gi j = 1 for each i in tier 1 of gAand each j with x j > 0. There are two subcases.

In Subcase 1, xB
[1] > 0. To support s as a strict equilibrium, player i in tier 1 of gAhas no incentive to

deviate to deleting a link, which requires that

α(βnA
1 −dA

[2])>
1
2

[
(dout

i )2 − (dout
i −1)2

]
= 1

2

[
(n−nA

1 )
2 − (n−nA

1 −1)2
]
= n−nA

1 − 1
2 .

Since dA
[2] ≥ 0, we have αβnA

1 > n− nA
1 − 1

2 , that is, (αβ + 1)nA
1 > n− 1

2 . Then 1− ρ(s) = nA
1
n >

1
αβ+1 −

1
2(αβ+1)n . In Subcase 2, xB

[1] = 0. To support s as a strict equilibrium, player i in tier 1 of gB has

no incentive to deviate to deleting a link to a player in tier 2 of gB, which requires that

(1−δ )α[β (nA
1 +nB

1 )−dB
[2]]>

1
2

[
(dout

i )2 − (dout
i −1)2

]
= 1

2

[
(n−nA

1 −nB
1 )

2 − (n−nA
1 −nB

1 −1)2
]

= n−nA
1 −nB

1 − 1
2 .

Since δ≥0 , dB
[2] ≥ 0, similarly to Subcase 1, we have 1−ρ(s) = nA

1+nB
1

n > 1
αβ+1 −

1
2(αβ+1)n .

In Case 3, for each gω , there exists a player i in tier 1 of network gω , gi j = 1 if j is in tier t of gω ′

where t = min{t̃|xω ′

t̃ > 0}. First, since gi j = 0 if x j ≤ xi, there exists ω such that xω

[1]= 0. Without loss

of generality, let xA
[1]= 0. There are two subcases. In Subcase 1, xB

[1]> 0. Then gi j = 1 for each i in tier 1

of gAand each j with x j > 0. Then similarly to Subcase 1 in Case 2, 1−ρ(s)> 1
αβ+1 −

1
2(αβ+1)n . In

Subcase 2, xB
[1]= 0. Since gi j = 0 if x j ≤ xi, there exists ω such that gi j = 0 for each i in tier 2 of gωand
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each j in tier 2 of gω ′
. Without loss of generality, let gA be such network. Then similarly to Subcase 2

in Case 2, 1−ρ(s)> 1
αβ+1 −

1
2(αβ+1)n .

Generalization of Proposition 3

The following proposition generalizes Proposition 3 to the case in which α > 1. Then Proposition 3 is

a special case of this proposition with α ≤ 1.

Proposition 9. Suppose that α2β +α > 1. Then there exists some sufficiently large n∗ such that, for

each n ≥ n∗, we have

ρ(s)≥


α2β 2+αβ−β

α2β 2+α2β+2αβ+α
if α ≤ 1

αβ−β

2(αβ+α−β ) if α > 1 and αβ −α −β ≤ 0
αβ−α−β

2(αβ−β ) if α > 1 and αβ −α −β > 0

for each payoff dominant strict equilibrium s = (x,g).

Proof of Proposition 9: As in the proof for Proposition 3, it suffices to consider nonempty

network equilibria. Consider a strict equilibrium s = (x,g) with t̄ tiers and nt players in each tier t of

g. According to Proposition 1, all players in the same tier provide the same level of content in a strict

equilibrium. We let x[t] denote the content provision of tier t players. It suffices to show that there exists

n∗ and p∗ such that, for each n > n∗, if x[1] = 0 and n1
n > 1− p∗, then (x,g) is not a payoff-dominant

equilibrium. The case when α ≤ 1 is proved in Proposition 3. Then it remains to consider the case in

which α > 1. If n2 > 1 and gi j = 0 for any i, j that belong to tier 2, then x[2] = βn1 − (n−n1 −n2). To

support it as a strict equilibrium, each player i in tier 2 has no incentive to deviate by adding a link to

some j in the same tier and x′i = βn1 − (n−n1 −n2 +1), that is,

ui(x′,g′)+αx[2]−βn1< ui(x′,g′)

⇔ αx[2] < βn1

⇒ n1 <
αn

αβ+α−β

⇔ ρ(s)> αβ−β

αβ+α−β
>


αβ−β

2(αβ+α−β ) if αβ −α −β ≤ 0
αβ−α−β

2(αβ−β ) if αβ −α −β > 0
.

If n1 ≤ n2 +1, then
n1
n ≤ 1

2 +
1
2n ⇒ ρ(s)≥ 1

2 −
1
2n .
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Since αβ−β

2(αβ+α−β ) <
1
2 and αβ−α−β

2(αβ−β ) <
1
2 , there exists some m∗

1 such that for n > m∗
1,

1
2 −

1
2n >


αβ−β

2(αβ+α−β ) if αβ −α −β ≤ 0
αβ−α−β

2(αβ−β ) if αβ −α −β > 0
.

Thus it remains to consider n1 > n2 +1 with n2 = 1 or gi j = 1 for any i, j in tier 2 in g. There are three

cases.

In Case 1, βn2−α− 1
2 > 0 and αβ −α−β ≤ 0. We will show that there exists m∗

2 such that, for any

n > m∗
2, if n1

n > α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n , then (x,g) is not a payoff dominant equilibrium. Note that, if

2αβ −2α −2β +1 ≤ 0, then α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n ≤ α

αβ+α−β
< 1 and α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n >
2αβ−2β+1
2(αβ+α−β ) > 0; if 2αβ −2α −2β +1 > 0, then

0 < α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n ≤ 2αβ−2β+1
2(αβ+α−β ) < 1.

Pick a positive integer k that satisfies

(αβ−β+α)n1−αn+α+β−αβ−βn2
α

< k < 2(αβ−β+α)n1−2αn+2α+2β−2αβ−1
2α

.

Note that since βn2 −α − 1
2 > 0,

(αβ−β+α)n1−αn+α+β−αβ−βn2
α

< 2(αβ−β+α)n1−2αn+2α+2β−2αβ−1
2α

−1.

Moreover, since αβ −α −β ≤ 0 and α > 1,

2(αβ−β+α)n1−2αn+2α+2β−2αβ−1
2α

≤ 4αn1−2αn+2α+2β−2αβ−1
2α

≤ 2αn1−2α+2α+2β−2αβ−1
2α

= n1 +
2β−2αβ−1

2α

< n1

where the second inequality holds since n1 ≤ n− 1. And since n1
n > α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n , there

exists some m∗
2 such that for any n > m∗

2,

2(αβ −β +α)n1 −2αn+2α +2β −2αβ −1 = 2n(αβ −β +α)
(

n1
n − α

αβ+α−β
− 2αβ−2α−2β+1

2(αβ+α−β )n

)
> 1

and therefore such integer k ≥ 1 exists. Similarly to the proof for Proposition 3, we can construct

strategy profile s′ = (x′,g′) which will be shown to be a Pareto improvement and an equilibrium. First,
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let g′ has t̄ ′ = t̄ +1 tiers, such that (1) for all players in each of the tiers t ≥ 2 in g, they are placed in

tier t +1 in g′ and provide exactly the same content as before, i.e., x′[t+1] = x[t] for each t ≥ 2; (2) for

players in tier 1 in g, they are divided into two subsets, among which k players are placed in tier 2 in

g′, while the remaining players stay in tier 1 and provide xi = 0. Let N′
2 ⊂ N denote the set of those k

players in tier 2 in g′, and we let x′i = β (n1 −1)− (n−n1 + k−1) for each i ∈ N′
2. Let N′

1 ⊂ N denote

the set of those n1 − k players in tier 1 in g′. Second, set g′i j = 1 if i ∈N′
1 ∪N′

2 and j ∈N′
2; otherwise, set

g′i j = gi j. There are two steps.

In Step 1, we show that (x′,g′) is an equilibrium. First, for each player i that belongs to tier

t ≥ 3 in g′, since (x,g) is a strict equilibrium, and x′i = xi,g′i j = gi j and g′ji = g ji for any j, it suffices

to show that player does not have incentive to deviate to adding l links to players in N′
2 and x′i =

β (n1 + n2 − 1)− (n− n1 − 1+ l). Since k > (αβ+α−β )n1−αn+α+β−αβ−βn2
α

, αx′[2] < β (n1 + n2 − 1).

Thus, player i has no incentive to deviate. Second, for each i ∈ N′
2, suppose that she deletes l outward

links. Then her optimal content provision would be x′′i = β (n1 − 1)− (n− n1 + k− 1− l), and her

payoff would be weakly lower than

ui(x′,g′)−αlx′[2]+β (n1 −1)l = ui(x′,g′)− l{α[β (n1 −1)− (n−n1 + k−1)]−β (n1 −1)}

< ui(x′,g′)

where the last inequality holds since k < 2(αβ+α−β )n1−2αn+2α+2β−2αβ−1
2α

< (αβ+α−β )n1−αn+α+β−αβ

α
.

Third, each player i inN′
1 has no incentive to deviate by deleting l links to players in N′

2, that is,

α[β (n1 −1)− (n−n1 + k−1)]> β (n1 −1)+ 1
2

> n−n1 + k−1+ 1
2

= n−n1 + k− 1
2

> n−n1 + k− l
2

where the first inequality holds since k < 2(αβ+α−β )n1−2αn+2α+2β−2αβ−1
2α

and the third holds since

β (n1 −1)> n−n1 + k−1. Thus,

−αl[β (n1 −1)− (n−n1 + k−1)]− 1
2(n−n1 + k− l)2 + 1

2(n−n1 + k)2 < 0.

In Step 2, we can show that ui(x′,g′)≥ ui(x,g) for each i ∈ N, and that the inequality holds strictly

for each i ∈ N′
1∪N′

2. First, for any player i in tier t > 2 in g′, ui(x′,g′) = ui(x,g). Second, for each i ∈ N′
2,

ui(x,g) equals to her payoff in (x′,g′) with deviation to zero content provision and deleting all links to

players in N′
2, which is lower than her payoff in (x′,g′) with deviation to x′′i = β (n1 −1)− (n−n1) and

deleting all links to players in N′
2, that is strictly lower than her payoff in (x′,g′) as is shown in Step

1. Third, for each i ∈ N′
1, ui(x,g) equals her payoff in (x′,g′) when deviated to deleting her links to all
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players in N′
2,which is strictly lower than ui(x′,g′) as is shown in Step 1.

To conclude, for each payoff-dominant equilibrium (x,g) and each n > m∗
2, we have

n1
n ≤ α

αβ+α−β
+ 2αβ−2α−2β+1

2(αβ+α−β )n .

Thus,

ρ(s)≥ αβ−β

αβ+α−β
− 2αβ−2α−2β+1

2(αβ+α−β )n

≥ αβ−β

αβ+α−β
− αβ−β

2(αβ+α−β )n

> αβ−β

αβ+α−β
− αβ−β

2(αβ+α−β ) =
αβ−β

2(αβ+α−β ) .

In Case 2, βn2 −α − 1
2 ≤ 0 and αβ −α −β ≤ 0. We will show that there exists m∗

3 such that,

for any n > m∗
3, if n1

n > α

αβ+α−β
+ (αβ−α−β )(1−n2)

(αβ+α−β )n , then n1 ≥ 3 and (x,g) is not a payoff dominant

equilibrium. Note that, since αβ −α −β ≤ 0 and βn2 −α − 1
2 ≤ 0,

α

αβ+α−β
+ (αβ−α−β )(1−n2)

(αβ+α−β )n < α

αβ+α−β
−

(αβ−α−β )(
α+ 1

2
β

−1)
(αβ+α−β )n < 1

for some m∗
4 and any n > m∗

4. Moreover, there exists m∗
5 such that, for any n > m∗

5, α

αβ+α−β
+

(αβ−α−β )(1−n2)
(αβ+α−β )n > 1

1+β
+ (2α−β )n2+β

(1+β )n . Thus,

n1
n > 1

1+β
+ (2α−β )n2+β

(1+β )n ⇒ β (n1 +n2 −1)− (n−n1)> 2αn2

⇒ [β (n1 +n2 −1)− (n−n1)]
2 > (2αn2)

2 ≥ 4αn2.

Pick a positive integer k < n1 that satisfies

2 ≤ k < (αβ−β+α)n1−αn−(α+β−αβ )n2+α+β−αβ

α
.

Note that since n1
n > α

αβ+α−β
+ (αβ−α−β )(1−n2)

(αβ+α−β )n , we have

(αβ −β +α)n1 −αn− (α +β −αβ )n2 +α +β −αβ > 0.

Similarly to that in Case 1, there exists m∗
6 such that, for any n > m∗

6 such integer k exists. Let

m∗
3 = max{m∗

4,m
∗
5,m

∗
6}. We can construct strategy profile s′ = (x′,g′) which will be shown to be

a Pareto improvement and an equilibrium. First, let g′ has t̄ tiers, such that (1) for all players in

each of the tiers t ≥ 3 in g, they are placed in tier t in g′ and provide exactly the same content as

before, i.e., x′[t] = x[t] for each t ≥ 3; (2) all players in tier 2 in g stay in tier 2 in g′ and provide

x′i = β (n1 +n2 −1)− (n−n1 + k−1); (3) players in tier 1 in g are divided into two subsets, among
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which k players are placed in tier 2 in g′ and provide β (n1 + n2 − 1)− (n− n1 + k− 1);, while the

remaining players stay in tier 1 and provide xi = 0. Let N′
2 ⊂ N denote the set of those k players in tier

2 in g′ who were in tier 1 in g. Let N′
1 ⊂ N denote the set of those n1 − k players in tier 1 in g′. Second,

set g′i j = 1 for i in tier t ≤ 2 in g and j ∈N′
2; otherwise, set g′i j = gi j. Similarly to Case 1, there are two

steps.

In Step 1, we show that (x′,g′) is an equilibrium. First, for each player i that belongs to tier 2 in g′,

since k < (αβ−β+α)n1−αn−(α+β−αβ )n2+α+β−αβ

2α
,

αx′[2] = α[β (n1 +n2 −1)− (n−n1 + k−1)]> β (n1 +n2 −1)+αn2 > β (n1 +n2 −1).

Thus, player i has no incentive to deviate by deleting l links to players in tier 2 in g′ and x′i =

β (n1 +n2 −1)− (n−n1 + k−1− l). As a result, player i has no incentive to deviate by deleting any

links. Second, since

αx′[2] = α[β (n1 +n2 −1)− (n−n1 + k−1)]

> β (n1 +n2 −1)+αn2

≥ β (n1 +n2 −1)+1

> n−n1 + k− 1
2 ,

each i ∈ N′
1 has no incentive to deviate by deleting her links. Third, for each player i that belongs to

tier t > 2 in g, since (x,g) is a strict equilibrium, x′i = xi,x′[2] < x[2],g′i j = gi j and g′ji = g ji for each j,

player i has no incentive to deviate by adding some links to player j in tier 2 in g′ or any other possible

deviations.

In Step 2, similarly to Step 2 in Case 1, we can show that ui(x′,g′) ≥ ui(x,g) for each i ∈ N,

and that the inequality holds strictly for each i in tier 2 in g. First, for any player i in tier t > 2 in

g′, ui(x′,g′) = ui(x,g). Second, for each i in tier 2 in g, ui(x,g) equals to her payoff in (x′,g′) with

deviation to deleting her links to players in N′
2 and xi, which is strictly higher than ui(x′,g′) as is shown

in Step 1. Third, for each i ∈ N′
2,

ui(x′,g′)−ui(x,g)

= αn2(x′[2]− x[2])+α(k−1)x′[2]+β (n1 +n2 −1)x′[2]−
1
2 [β (n1 +n2 −1)]2 + 1

2(n−n1)
2

=−αn2k+α(k−1)x′[2]+
1
2 [β (n1 +n2 −1)− (n−n1)]

2 − (k−1)β (n1 +n2 −1)

>−αn2k+α(k−1)x′[2]+αn2 − (k−1)β (n1 +n2 −1)

= (k−1)[αx′[2]−αn2 −β (n1 +n2 −1)]

> 0
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where the third inequality holds since [β (n1 +n2 −1)− (n−n1)]
2 > 4αn2 and the last inequality holds

since

αx′[2] = α[β (n1 +n2 −1)− (n−n1 + k−1)]> β (n1 +n2 −1)+αn2.

Fourth, for each i ∈ N′
1,

ui(x′,g′)−ui(x,g)

= αn2(x′[2]− x[2])+αkx′[2]−
1
2(n−n1 + k)2 + 1

2(n−n1)
2

=−αn2k+αkx′[2]− k(n−n1 +
k
2)

= k[αx′[2]−αn2 − (n−n1 +
k
2)]

> 0

where the last inequality holds since

αx′[2] = α[β (n1 +n2 −1)− (n−n1 + k−1)]

> β (n1 +n2 −1)+αn2

> n−n1 + k−1+αn2

≥ n−n1 +
k
2 +αn2.

To conclude, for each payoff-dominant equilibrium (x,g) and each n > m∗
3, we have

n1
n ≤

α

αβ+α−β
+ (αβ−α−β )(1−n2)

(αβ+α−β )n

≤ α

αβ+α−β
+ (αβ−α−β )(1−n+n1)

(αβ+α−β )n

= −αβ+2α+β

αβ+α−β
+ αβ−α−β

(αβ+α−β )n +
(αβ−α−β )n1
(αβ+α−β )n .

Thus,
n1
n ≤

−αβ+2α+β

2α
+ αβ−α−β

2αn ⇔ ρ(s)≥ αβ−β

2α
+ −αβ+α+β

2αn > αβ−β

2α
> αβ−β

2(αβ+α−β ) .

In Case 3, αβ −α −β > 0. Thus αβ > α +β > α. We will show that there exists m∗
7 such that, for

any n > m∗
7, if n1

n > α

αβ−β
+ 2αβ−2α−2β+1

2(αβ−β )n , then n1 ≥ 3 and (x,g) is not a payoff dominant equilibrium.

Note that for some m∗
8 and each n > m∗

8,

2αβ−2α−2β+1
2(αβ−β )n < αβ−α−β

2(αβ−β )

and therefore

α

αβ−β
+ 2αβ−2α−2β+1

2(αβ−β )n < α

αβ−β
+ αβ−α−β

2(αβ−β ) <
α

αβ−β
+ αβ−α−β

αβ−β
= 1.
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Let m∗
7 = max{m∗

2,m
∗
3,m

∗
8}. If (αβ−β+α)n1−βn2−αn+α+β−αβ

α
< n1, then we can construct strategy pro-

file s′ = (x′,g′) as in Case 1 with k = n1 such that (1) g′ has t̄ tiers, and all players in each of the

tiers t ≥ 2 in g are placed in tier t in g′ and provide exactly the same content as before, i.e., x′[t] = x[t]
for each t ≥ 2; (2) each player i in tier 1 in g stays in tier 1 and provides x′i = β (n1 − 1)− (n− 1);

(3) g′i j = 1 for i and j in tier 1 in g′, and otherwise, g′i j = gi j. Since n1
n > α

αβ−β
+ 2αβ−2α−2β+1

2(αβ−β )n ,

then k = n1 < 2(αβ−β+α)n1−2αn+2α+2β−2αβ−1
2α

. Moreover, (αβ−β+α)n1−βn2−αn+α+β−αβ

α
< n1 = k.

Thus, we can show (x′,g′) is a Pareto improvement and an equilibrium similarly to Case 1. If
(αβ−β+α)n1−βn2−αn+α+β−αβ

α
≥ n1, then we can construct strategy profile s′ = (x′,g′) as in Case 2 with

2 ≤ k < (αβ−β+α)n1−αn−(α+β−αβ )n2+α+β−αβ

α
and k ≤ n1 −1 such that (1) g′ has t̄ tiers, and all players

in each of the tiers t ≥ 3 in g are placed in the same tier t in g′ and provide exactly the same content

as before, i.e., x′[t] = x[t] for each t ≥ 3; (2) each player i in tier 2 in g stays in tier 2 and provides

x′i = β (n1 +n2 −1)− (n−n1 + k−1); (3) players in tier 1 in g are divided into two subsets, among

which k players are placed in tier 2 in g′ and provide β (n1 + n2 − 1)− (n− n1 + k− 1), while the

remaining players stay in tier 1 and provide xi = 0; (4) g′i j = 1 for i in tier t ≤ 2 in g′ and j in tier 2 in

g′, and otherwise, g′i j = gi j. Note that since (αβ−β+α)n1−βn2−αn+α+β−αβ

α
≥ n1,

(αβ −β +α)n1 −αn− (α +β −αβ )n2 +α +β −αβ ≥ αn1 − (α −αβ )n2

≥ αn2 +α − (α −αβ )n2

= αβn2 +α

> 2α

where the second inequality holds since n1 ≥ n2+1 and the last inequality holds since αβ > α and

n2 ≥ 1. Thus, (αβ−β+α)n1−αn−(α+β−αβ )n2+α+β−αβ

α
> 2 and k exists. Then we can show (x′,g′) is a

Pareto improvement and an equilibrium similarly to Case 2.

To conclude, for each payoff-dominant equilibrium (x,g) and each n > m∗
7, we have n1

n ≤ α

αβ−β
+

2αβ−2α−2β+1
2(αβ−β )n . Thus,

ρ(s)≥ αβ−α−β

αβ−β
− 2αβ−2α−2β+1

2(αβ−β )n ≥ αβ−α−β

αβ−β
− αβ−α−β

2(αβ−β ) =
αβ−α−β

2(αβ−β ) .

Combining the above three cases. Let n∗ = max{m∗
1,m

∗
2,m

∗
3,m

∗
7}. Then for each payoff-dominant

equilibrium (x,g) and each n > n∗, we have

ρ(s)≥


αβ−β

2(αβ+α−β ) if αβ −α −β ≤ 0
αβ−α−β

2(αβ−β ) if αβ −α −β > 0
.
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Generalization of Footnote 15

Here we will show that Proposition 9 holds if we alternatively we define influencers as those with

content provision levels higher than a given threshold which can be even increasing in n.

Proof: By Proposition 9, if α2β +α > 1, then there exists ρ∗ ∈ (0,1) such that, for sufficiently

large n, we have ρ(s)≥ ρ∗ for each payoff dominant strict equilibrium s = (x,g). Suppose that there

are t̄ tiers in g and nt players in each tier t of g. According to Proposition 1, all players in the same tier

provide the same level of content in a strict equilibrium. We let x[t] denote the content provision of tier

t players. It suffices to show that min{x[t]|x[t] > 0}> bn for some b > 0. There are two cases.

In Case 1, x[1] = 0. Then min{x[t]|x[t] > 0}= x[2]. To support (x,g) as a strict equilibrium, some

player i in tier 1 has no incentive to delete a link to a player in tier 2, which requires that

ui(x,g)> ui(x,g)−αx[2]+
1
2(n−n1)

2 − 1
2(n−n1 −1)2

⇔ αx[2] >
1
2(2n−2n1 −1)

⇔ x[2] >
1

2α
(2n−2n1 −1).

Then for n ≤ 1
ρ∗ , since n− n1 ≥ 1,

x[2]
n > 1

2αn(2n− 2n1 − 1) ≥ 1
2αn ≥ ρ∗

2α
> 0. For n > 1

ρ∗ , since

n−n1 ≥ ρ∗n,
x[2]
n > 1

2α
(2ρ∗− 1

n)>
1

2α
(2ρ∗−ρ∗) = ρ∗

2α
> 0.

In Case 2, x[1] > 0. Then by Lemma 4, α ≥ 1. Moreover, min{x[t]|x[t] > 0}= x[1] = β (n1 −1)−
(n−1), and n1 ≥ 2. To support (x,g) as a strict equilibrium, some player i in tier 1 has no incentive to

delete a link to a player in tier 1, which requires that

ui(x,g)> ui(x,g)−αx[1]+β (n1 −1)

⇔ αx[1] > β (n1 −1)

⇔ n1 −1 > α(n−1)
(α−1)β

⇔ x[1] >
α(n−1)

α−1 − (n−1) = n−1
α−1

⇔
x[1]
n

> 1
α−1 −

1
n > 0

for sufficiently large n. To conclude, there exists some b > 0 such that the claim holds.
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